skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A semi-analytic study of self-interacting dark-matter haloes with baryons
ABSTRACT We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, Mb/Mvir, and galaxy compactness, r1/2/Rvir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are similar to their CDM counterparts; and we delineate the regime of core-collapse in the Mb/Mvir − r1/2/Rvir space, for a given cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at https://github.com/JiangFangzhou/SIDM.  more » « less
Award ID(s):
1915005
PAR ID:
10464153
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4630 to 4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT It has been proposed that gravothermal collapse due to dark matter self-interactions (i.e. self-interacting dark matter, SIDM) can explain the observed diversity of the Milky Way (MW) satellites’ central dynamical masses. We investigate the process behind this hypothesis using an N-body simulation of a MW-analogue halo with velocity-dependent SIDM (vdSIDM) in which the low-velocity self-scattering cross-section, $$\sigma _{\rm T}/m_{\rm x}$$, reaches 100 cm2 g−1; we dub this model the vd100 model. We compare the results of this simulation to simulations of the same halo that employ different dark models, including cold dark matter (CDM) and other, less extreme SIDM models. The masses of the vd100 haloes are very similar to their CDM counterparts, but the values of their maximum circular velocities, Vmax, are significantly higher. We determine that these high Vmax subhaloes were objects in the mass range [5 × 106, 1 × 108] M⊙ at z = 1 that undergo gravothermal core collapse. These collapsed haloes have density profiles that are described by single power laws down to the resolution limit of the simulation, and the inner slope of this density profile is approximately −3. Resolving the ever decreasing collapsed region is challenging, and tailored simulations will be required to model the runaway instability accurately at scales <1 kpc. 
    more » « less
  2. Abstract When dark matter has a large cross section for self scattering, halos can undergo a process known as gravothermal core collapse, where the inner core rapidly increases in density and temperature.To date, several methods have been used to implement Self-Interacting Dark Matter (SIDM) in N-body codes, but there has been no systematic study of these different methods or their accuracy in the core-collapse phase. In this paper, we compare three different numerical implementations of SIDM, including the standard methods from the GIZMO and Arepo codes, by simulating idealized dwarf halos undergoing significant dark matter self interactions (σ/m= 50 cm2/g).When simulating these halos, we also vary the massresolution, time-stepping criteria, and gravitational force-softening scheme. The various SIDM methods lead to distinct differences in a halo's evolution during the core-collapse phase, as each results in spurious scattering rate differences and energy gains/losses.The use of adaptive force softening for gravity can lead to numerical heating that artificially accelerates core collapse, while an insufficiently small simulation time step can cause core evolution to stall or completely reverse. Additionally, particle numbers must be large enough to ensure that the simulated halos are not sensitive to noise in the initial conditions. Even for the highest-resolution simulations tested in this study (106particles per halo), we find that variations of order 10% in collapse time are still present.The results of this work underscore the sensitivity of SIDM modeling on the choice of numerical implementation and motivate a careful study of how these results generalize to halos in a cosmological context. 
    more » « less
  3. ABSTRACT Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section σ/m. We compare the shape of the main dark matter (DM) halo at redshift z = 0 predicted by SIDM simulations (at σ/m = 0.1, 1, and 10 cm2 g−1) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on σ/m. This transition could potentially be used to set limits on the SIDM cross-section in the MW. 
    more » « less
  4. Abstract We study the evolution of isolated self-interacting dark matter (SIDM) halos that undergo gravothermal collapse and are driven deep into the short-mean-free-path regime.We assume spherical Navarro-Frenk-White (NFW) halos as initial conditions and allow for elastic dark matter self-interactions.We discuss the structure of the halo core deep in the core-collapsed regime and how it depends on the particle physics properties of dark matter, in particular, the velocity dependence of the self-interaction cross section. We find an approximate universality deep in this regime that allows us to connect the evolution in the short- and long-mean-free-path regimes, and approximately map the velocity-dependent self-interaction cross sections to constant ones for the full gravothermal evolution. We provide a semi-analytic prescription based on our numerical results for halo evolution deep in the core-collapsed regime.Our results are essential for estimating the masses of the black holes that are likely to be left in the core of SIDM halos. 
    more » « less
  5. ABSTRACT We perform cosmological zoom-in simulations of 19 relaxed cluster-mass haloes with the inclusion of adiabatic gas in the cold dark matter (CDM) and self-interacting dark matter (SIDM) models. These clusters are selected as dynamically relaxed clusters from a parent simulation with $$M_{\rm 200} \simeq (1\!-\!3)\times 10^{15}{\, \rm M_\odot }$$. Both the dark matter and the intracluster gas distributions in SIDM appear more spherical than their CDM counterparts. Mock X-ray images are generated based on the simulations and are compared to the real X-ray images of 84 relaxed clusters selected from the Chandra and ROSAT archives. We perform ellipse fitting for the isophotes of mock and real X-ray images and obtain the ellipticities at cluster-centric radii of $$r\simeq 0.1\!-\!0.2R_{\rm 200}$$. The X-ray isophotes in SIDM models with increasing cross-sections are rounder than their CDM counterparts, which manifests as a systematic shift in the distribution function of ellipticities. Unexpectedly, the X-ray morphology of the observed non-cool-core clusters agrees better with SIDM models with cross-section $$(\sigma /m)= 0.5\!-\!1\, {\rm cm}^2\, {\rm g}^{-1}$$ than CDM and SIDM with $$(\sigma /m)=0.1\, {\rm cm}^2\, {\rm g}^{-1}$$. Our statistical analysis indicates that the latter two models are disfavoured at the $$68{{\ \rm per\ cent}}$$ confidence level (as conservative estimates). This conclusion is not altered by shifting the radial range of measurements or applying a temperature selection criterion. However, the primary uncertainty originates from the lack of baryonic physics in the adiabatic model, such as cooling, star formation and feedback effects, which still have the potential to reconcile CDM simulations with observations. 
    more » « less