Abstract BackgroundGenome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates. ResultsWe propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder. ConclusionsBGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures.
more »
« less
BG2: Bayesian variable selection in generalized linear mixed models with nonlocal priors for non-Gaussian GWAS data
Abstract Background Genome-wide association studies (GWASes) aim to identify single nucleotide polymorphisms (SNPs) associated with a given phenotype. A common approach for the analysis of GWAS is single marker analysis (SMA) based on linear mixed models (LMMs). However, LMM-based SMA usually yields a large number of false discoveries and cannot be directly applied to non-Gaussian phenotypes such as count data. Results We present a novel Bayesian method to find SNPs associated with non-Gaussian phenotypes. To that end, we use generalized linear mixed models (GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To deal with the high dimensionality of GWAS analysis, we propose novel nonlocal priors specifically tailored for GLMMs. In addition, we develop related fast approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2 screens for candidate SNPs; second, BG2 performs model selection that considers all screened candidate SNPs as possible regressors. A simulation study shows favorable performance of BG2 when compared to GLMM-based SMA. We illustrate the usefulness and flexibility of BG2 with three case studies on cocaine dependence (binary data), alcohol consumption (count data), and number of root-like structures in a model plant (count data).
more »
« less
- PAR ID:
- 10464156
- Date Published:
- Journal Name:
- BMC Bioinformatics
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1471-2105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundSingle marker analysis (SMA) with linear mixed models for genome wide association studies has uncovered the contribution of genetic variants to many observed phenotypes. However, SMA has weak false discovery control. In addition, when a few variants have large effect sizes, SMA has low statistical power to detect small and medium effect sizes, leading to low recall of true causal single nucleotide polymorphisms (SNPs). ResultsWe present the Bayesian Iterative Conditional Stochastic Search (BICOSS) method that controls false discovery rate and increases recall of variants with small and medium effect sizes. BICOSS iterates between a screening step and a Bayesian model selection step. A simulation study shows that, when compared to SMA, BICOSS dramatically reduces false discovery rate and allows for smaller effect sizes to be discovered. Finally, two real world applications show the utility and flexibility of BICOSS. ConclusionsWhen compared to widely used SMA, BICOSS provides higher recall of true SNPs while dramatically reducing false discovery rate.more » « less
-
Luigi Martelli, Pier (Ed.)Abstract Motivation Advanced publicly available sequencing data from large populations have enabled informative genome-wide association studies (GWAS) that associate SNPs with phenotypic traits of interest. Many publicly available tools able to perform GWAS have been developed in response to increased demand. However, these tools lack a comprehensive pipeline that includes both pre-GWAS analysis, such as outlier removal, data transformation and calculation of Best Linear Unbiased Predictions or Best Linear Unbiased Estimates. In addition, post-GWAS analysis, such as haploblock analysis and candidate gene identification, is lacking. Results Here, we present Holistic Analysis with Pre- and Post-Integration (HAPPI) GWAS, an open-source GWAS tool able to perform pre-GWAS, GWAS and post-GWAS analysis in an automated pipeline using the command-line interface. Availability and implementation HAPPI GWAS is written in R for any Unix-like operating systems and is available on GitHub (https://github.com/Angelovici-Lab/HAPPI.GWAS.git). Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
null (Ed.)Summary In recent biomedical research, genome-wide association studies (GWAS) have demonstrated great success in investigating the genetic architecture of human diseases. For many complex diseases, multiple correlated traits have been collected. However, most of the existing GWAS are still limited because they analyze each trait separately without considering their correlations and suffer from a lack of sufficient information. Moreover, the high dimensionality of single nucleotide polymorphism (SNP) data still poses tremendous challenges to statistical methods, in both theoretical and practical aspects. In this article, we innovatively propose an integrative functional linear model for GWAS with multiple traits. This study is the first to approximate SNPs as functional objects in a joint model of multiple traits with penalization techniques. It effectively accommodates the high dimensionality of SNPs and correlations among multiple traits to facilitate information borrowing. Our extensive simulation studies demonstrate the satisfactory performance of the proposed method in the identification and estimation of disease-associated genetic variants, compared to four alternatives. The analysis of type 2 diabetes data leads to biologically meaningful findings with good prediction accuracy and selection stability.more » « less
-
Abstract Genome-wide Association Studies (GWAS) methods have identified individual single-nucleotide polymorphisms (SNPs) significantly associated with specific phenotypes. Nonetheless, many complex diseases are polygenic and are controlled by multiple genetic variants that are usually non-linearly dependent. These genetic variants are marginally less effective and remain undetected in GWAS analysis. Kernel-based tests (KBT), which evaluate the joint effect of a group of genetic variants, are therefore critical for complex disease analysis. However, choosing different kernel functions in KBT can significantly influence the type I error control and power, and selecting the optimal kernel remains a statistically challenging task. A few existing methods suffer from inflated type 1 errors, limited scalability, inferior power or issues of ambiguous conclusions. Here, we present a new Bayesian framework, BayesKAT (https://github.com/wangjr03/BayesKAT), which overcomes these kernel specification issues by selecting the optimal composite kernel adaptively from the data while testing genetic associations simultaneously. Furthermore, BayesKAT implements a scalable computational strategy to boost its applicability, especially for high-dimensional cases where other methods become less effective. Based on a series of performance comparisons using both simulated and real large-scale genetics data, BayesKAT outperforms the available methods in detecting complex group-level associations and controlling type I errors simultaneously. Applied on a variety of groups of functionally related genetic variants based on biological pathways, co-expression gene modules and protein complexes, BayesKAT deciphers the complex genetic basis and provides mechanistic insights into human diseases.more » « less
An official website of the United States government

