The ability to communicate technical information in written, graphical, and verbal formats is an essential durable skill for engineering students to develop as undergraduates and carry forward into the workplace. The importance of technical communication skills is emphasized in the core ABET outcome “3. an ability to communicate effectively with a range of audiences.” Undergraduate engineering programs tend to adopt one of two strategies for technical writing instruction, either offering a stand-alone course that is frequently taught out-of-discipline or embedding technical communications skills within-discipline in laboratory or design classes. Despite these efforts, employers still report that novice engineers’ technical communications skills do not meet industry expectations. Prior work by our group attempted to address this skills gap through the design and implementation of a unique stand-alone technical communications course that was specifically created for first-year mechanical engineering students and centered on multiple, industry-aligned modalities of communication. Preliminary evaluation of this new curriculum showed that students demonstrated substantive gains in self-efficacy for nearly all technical communication skills covered in the course, including synthesis of background research, graphical representation of data, basic statistical analyses, and composition of technical reports and presentations in a variety of formats. In this paper, we will extend our prior work by examining whether the skills emphasized in this stand-alone first year course are transferred into later courses within the discipline. Specifically, we will focus on three core skill sets: (1) writing clear, concise, and coherent technical narratives; (2) graphical representation of quantitative and qualitative data sets; and (3) basic statistical analyses, including linear regressions, one-way ANOVA, and propagation of error. We will follow a single cohort of mechanical engineering students (n=147), beginning with the stand-alone technical communications course taken in the spring of their freshmen year, through their two subsequent semesters of coursework involving discipline-specific design and laboratory-based courses. For two semesters, post-course surveys will be administered to students that assess self-efficacy for the three core skill sets as well as their perceptions of the value and applicability of the first-year technical communications course in their current coursework. Also, written deliverables for a subset of students will be evaluated by faculty instructors according to established technical communications rubrics. The results of this study will be used to refine our first-year technical communications course and modify the strategies that we are using in later lab and design courses to activate prior technical communications knowledge (e.g., review exercises, exemplars, and common rubrics). More broadly, our approach to developing and reinforcing industry-aligned technical communications skills throughout our undergraduate curriculum may be of interest to other programs seeking to improve student outcomes in this area.
more »
« less
Integrating Internet of Things into Mechatronics to Prepare Mechanical Engineering Students for Industry 4.0
The Internet of Things (IoT) technologies can enable products to become smarter through sensing their environment, analyzing lots of data (big data), and connecting to the Internet to allow for the exchange of data. As smart products become ubiquitous, they provide enormous opportunities for scientists and engineers to invent new products and build interconnected systems of vast scale. As a result, the STEM workforce demands are shifting rapidly. Mechanical engineers will play a significant role in innovating and designing smart products and manufacturing systems of the Industry 4.0 revolution. However, the current mechanical engineering curriculum has not kept pace. In this paper, we present an overview of a new curriculum along with the design of an inexpensive smart flowerpot device that was used as an instructional tool throughout the curriculum. We provide details about how two curriculum modules were implemented in the first offering of the course. Preliminary assessment results from the first offering of the course are discussed.
more »
« less
- Award ID(s):
- 2116226
- PAR ID:
- 10464160
- Date Published:
- Journal Name:
- ASEE 2023 Annual Conference and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Norwich University, the oldest Senior Military College in the nation and the first private U.S. institution to teach engineering, has a residential program for approximately 2,100 primarily undergraduate students in both the Corps of Cadets and civilian lifestyles. Norwich secured a National Science Foundation S-STEM award in the beginning of 2020 to develop a program to attract and retain highly talented, low-income students in STEM. One of the aims of the project was to support students who enter college with less experience in mathematics as these students were significantly less likely to graduate with a STEM degree. In the fall of 2020, as a result of the S-STEM award, the mathematics department offered a pilot corequisite calculus course to STEM majors requiring calculus their first semester but placed into precalculus by the mathematics departmental placement test. The corequisite calculus course includes content from precalculus into a one semester calculus course that meets daily for 6 contact hours rather than a standard 4 credit hour calculus course. The Norwich University Civil, Electrical and Computer, and Mechanical Engineering programs are accredited by the Engineering Accreditation Commission of ABET, placing restrictions on the 8-semester engineering degree pathway. The added credits to the first semester corequisite calculus course fit the constraints of the first semester engineering course load and this course has enabled engineering students that place into precalculus to complete an on-time degree plan without taking summer courses. The corequisite course has been approved by the university curriculum committee and is a regular offering at the institution. The initial offering of the corequisite course occurred during the COVID pandemic necessitating the use of additional instructional technology. There was also an increase in low stakes assessments to encourage students to engage in the material. The added credits also increased the regularity of student interacting with calculus. Since the implementation of this pilot course, there have been several similar changes in other courses required by engineering majors. The pilot corequisite course has become institutionalized and even is now scaling, with the engineering department requesting the course to be offered each semester to benefit students who are out of sync with the intended curriculum pathway. This project examines how the corequisite calculus course may have influenced changes in the general education courses and engineering first year sequence. Outcome harvesting as well as process tracing are used to determine the strength of evidence linking the corequisite course to institutional change. Qualitative and quantitative data will be examined as well to understand how the S-STEM award contributed to breakdown of the resistance to curriculum change and the readiness to implement and scale corequisite courses in other areas. It is important to understand the mechanisms used for building capacity at the institution to transform STEM education in higher educationmore » « less
-
In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. The paper will describe the design and details of the initial implementation of the E4USA curriculum, focusing on the features that make this course suitable ‘for all.’more » « less
-
This paper examines the impact of a human rights framework in engineering education on students' perceptions of sustainability and human rights. Recently, scholars have emphasised the need to develop a new engineering pedagogy and an ethical framework for the workforce. This emphasis arises from the fact that, as the engineering workforce has become multicultural and globalised, prospective engineers require new ideas, technologies, perspectives and professional ethics to adapt to the changing world. In this context, scholars have primarily focused on creating sustainable approaches that highlight the coexistence between humans and nature, along with equity, diversity and human dignity, while also developing educational strategies to challenge the conventional notion of engineers as problem‐solvers. The University of Connecticut (UConn) has developed a curriculum that equips students with the core concepts and methodological tools essential for understanding the socially and environmentally responsive roles of engineers and their solutions. This paper examines learning outcomes in an existing course within this curriculum, ‘Engineering for Human Rights’, by analysing original, anonymized exit survey data and anonymized SET evaluations from enrolled students. We also assess the instructors' reflections on the class. The findings of our research contribute to broader discussions of innovation in engineering pedagogy.more » « less
-
null (Ed.)In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design.more » « less
An official website of the United States government

