The Genomics Education Partnership (GEP; https://thegep.org) began as a consortium of 16 faculty in 2006 with a goal of providing students with Course-based Undergraduate Research Experiences (CUREs) in genomics. Today, GEP has over 200 faculty from more than 180 institutions and engages more than 3,900 undergraduates in authentic genomics research annually. These faculty joined and continued to participate in the GEP for many reasons, including the collaborative nature of the research, the well-established infrastructure, and the supportive network of like-minded colleagues. Faculty implement GEP materials in diverse settings ? ranging from short modules (2-8 weeks) within a course, to a standalone full-semester course, to independent student research. GEP students show significant gains in scientific knowledge and attitudes toward science. In addition to improving their understanding of the research process and how new knowledge is created in the field, GEP students acquire desirable and transferable skills essential for future participation in the workforce, such as problem solving, independence, application of knowledge, team-work, and collaboration. Students also gain competence in the use of computational algorithms to analyze large biological datasets ? thereby preparing students for a growing need of a workforce trained at applying statistics and computational tools to analyze large datasets. In addition, GEP students and their faculty mentors are eligible to be co-authors on the scientific publications that are based on their work. In this workshop, we will provide an overview of the GEP community, a hands-on guided tour of our introductory curriculum aimed to teach gene structure, transcription, translation, and processing, and a step-by-step walkthrough that illustrates the protocol for annotating a protein-coding gene in Drosophila. Participants will receive information on how to join the GEP community and receive training and resources to enable their implementations.
more »
« less
Manual annotation of Drosophila genes: a Genomics Education Partnership protocol
Annotating the genomes of multiple species allows us to analyze the evolution of their genes. While many eukaryotic genome assemblies already include computational gene predictions, these predictions can benefit from review and refinement through manual gene annotation. The Genomics Education Partnership (GEP; https://thegep.org/ ) developed a structural annotation protocol for protein-coding genes that enables undergraduate student and faculty researchers to create high-quality gene annotations that can be utilized in subsequent scientific investigations. For example, this protocol has been utilized by the GEP faculty to engage undergraduate students in the comparative annotation of genes involved in the insulin signaling pathway in 27 Drosophila species, using D. melanogaster as the reference genome. Students construct gene models using multiple lines of computational and empirical evidence including expression data (e.g., RNA-Seq), sequence similarity (e.g., BLAST and multiple sequence alignment), and computational gene predictions. Quality control measures require each gene be annotated by at least two students working independently, followed by reconciliation of the submitted gene models by a more experienced student. This article provides an overview of the annotation protocol and describes how discrepancies in student submitted gene models are resolved to produce a final, high-quality gene set suitable for subsequent analyses. The protocol can be adapted to other scientific questions (e.g., expansion of the Drosophila Muller F element) and species (e.g., parasitoid wasps) to provide additional opportunities for undergraduate students to participate in genomics research. These student annotation efforts can substantially improve the quality of gene annotations in publicly available genomic databases.
more »
« less
- Award ID(s):
- 1915544
- PAR ID:
- 10464162
- Date Published:
- Journal Name:
- F1000Research
- Volume:
- 11
- ISSN:
- 2046-1402
- Page Range / eLocation ID:
- 1579
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Knowledge of genomics is an essential component of science for high school student health literacy. However, few high school teachers have received genomics training or any guidance on how to teach the subject to their students. This project explored the impact of a genomics and bioinformatics research pipeline for high school teachers and students using an introduction to genome annotation research as the catalyst. The Western New York-based project had three major components: (1) a summer teacher professional development workshop to introduce genome annotation research, (2) teacher-guided student genome annotation group projects during the school year, (3) with an end of the academic year capstone symposium to showcase student work in a poster session. Both teachers and students performed manual gene annotations using an online annotation toolkit known as Genomics Education National Initiative-Annotation Collaboration Toolkit (GENI-ACT), originally developed for use in a college undergraduate teaching environment. During the school year, students were asked to evaluate the data they had collected, formulate a hypothesis about the correctness of the computer pipeline annotation, and present the data to support their conclusions in poster form at the symposium. Evaluation of the project documented increased content knowledge in basic genomics and bioinformatics as well as increased confidence in using tools and the scientific process using GENI-ACT, thus demonstrating that high school students are capable of using the same tools as scientists to conduct a real-world research task.more » « less
-
Abstract The burgeoning field of genomics as applied to personalized medicine, epidemiology, conservation, agriculture, forensics, drug development, and other fields comes with large computational and bioinformatics costs, which are often inaccessible to student trainees in classroom settings at universities. However, with increased availability of resources such as NSF XSEDE, Google Cloud, Amazon AWS, and other high-performance computing (HPC) clouds and clusters for educational purposes, a growing community of academicians are working on teaching the utility of HPC resources in genomics and big data analyses. Here, I describe the successful implementation of a semester-long (16 week) upper division undergraduate/graduate level course in Computational Genomics and Bioinformatics taught at San Diego State University in Spring 2022. Students were trained in the theory, algorithms and hands-on applications of genomic data quality control, assembly, annotation, multiple sequence alignment, variant calling, phylogenomic analyses, population genomics, genome-wide association studies, and differential gene expression analyses using RNAseq data on their own dedicated 6-CPU NSF XSEDE Jetstream virtual machines. All lesson plans, activities, examinations, tutorials, code, lectures, and notes are publicly available at https://github.com/arunsethuraman/biomi609spring2022.more » « less
-
Gene model for the ortholog of Myc (Myc) in the D. eugracilis Apr. 2013 (BCM-HGSC/Deug_2.0) (DeugGB2) Genome Assembly (GenBank Accession: GCA_000236325.2) of Drosophila eugracilis. This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.more » « less
-
Marshall, Pamela Ann (Ed.)ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education.more » « less
An official website of the United States government

