skip to main content


Title: Supporting the democratization of science during a pandemic: genomics Course-based Undergraduate Research Experiences (CUREs) as an effective remote learning strategy
ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education.  more » « less
Award ID(s):
1915544
NSF-PAR ID:
10464411
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Marshall, Pamela Ann
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miller, Eva (Ed.)
    The COVID-19 pandemic disrupted global educational systems with institutions transitioning to e-learning. Undergraduate STEM students complained about lowered motivation to learn and complete STEM course requirements. To better prepare for more effective STEM education delivery during high-risk conditions such as pandemics, it is important to understand the learning motivation challenges (LMCs) experienced by students. As part of a larger national research study investigating decision-making in undergraduate STEM students during COVID-19, the purpose of this research is to examine LMCs experienced by undergraduate STEM students. One hundred and ninety students from six U.S. institutions participated in Qualtrics-based surveys. Utilizing a five-point Likert scale, respondents ranked the extent to which they agreed to LMC statements. Using Qualtrics Data Analysis tools and MS Excel, data from 130 useable surveys was analyzed utilizing descriptive and inferential statistics. Results revealed that regardless of classification, GPA, age, or race, STEM students experienced LMCs. The top five LMCs were: (1) Assignment Overloads; (2) Lack of In-Person Peer Interactions; (3) Uncaring Professors; (4) Lack of In-Person Professor Interactions; and (5) Lack of In-Person Laboratory Experiences. Significant relationships existed between three characteristics (GPA, classification, and age) and few LMCs to include assignment overloads. Students tended to attribute lowered motivation to Institutional and Domestic challenges which were typically out of their control, rather than to Personal challenges which were typically within their control. Crosstab analysis suggested that Sophomores, Asians, as well as students with GPAs between 2.00 and 2.49 and aged 41 to 50 years may be the most vulnerable due to higher dependence on traditional in-person STEM educational environments. Early identification of the most vulnerable students should be quickly followed by interventions. Increased attention towards sophomores may reduce exacerbation of potential sophomore slump and middle-child syndrome. All STEM students require critical domestic, institutional, and personal resources. Institutions should strengthen students’ self-regulation skills and provide increased opportunities for remote peer interactions. Training of faculty and administrators is critical to build institutional capacity to motivate and educate STEM students with diverse characteristics in e-learning environments. Pass/fail policies should be carefully designed and implemented to minimize negative impacts on motivation. Employers should expand orientation and mentoring programs for entry-level employees, particularly for laboratory-based tasks. Research is needed to improve the delivery of STEM laboratory e-learning experiences. Findings inform future research, as well as best practices for improved institutional adaptability and resiliency. These will minimize disruptions to student functioning and performance, reduce attrition, and strengthen progression into the STEM workforce during high-risk conditions such as pandemics. With caution, findings may be extended to non-STEM and non-student populations. 
    more » « less
  2. Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials (https://mdh-cures-community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtual format),focused on i) use of primary literature and bioinformatics, ii) the roles of non-covalent interactions, iii) keeping accurate laboratory notebooks, iv) hypothesis development and research proposal writing, and, v) presenting the project and drawing evidence based conclusions The first phase, Developing a Research Proposal, contains three modules, and develops hallmarks of a good student-developed hypothesis using available literature (PubMed3) and preliminary observations obtained using bioinformatics, Module 1: Using Primary Literature and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6), Module 2: Molecular Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided rubrics guide student expectations. In the second phase, Preparing the Proteins, students prepared necessary proteins and mutants using Module 4: Creating and Validating Models, which leads users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, energy minimization using RefineD11 or ModRefiner12, and structure validation using MolProbity13. In the third phase, Computational Experimental Approaches to Explore the Questions developed from the Hypothesis, students selected appropriate tools to perform their experiments, chosen from computational techniques suitable for a CURE laboratory class taught remotely. Questions, paired with computational approaches were selected from Modules 5: Exploring Titratable Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open Eye18 or the Molecular Operating Environment (MOE)19). All involve freely available computational approaches on publicly accessible web-based servers around the world (with the exception of MOE). Original literature/Journal club activities on approaches helped students suggest tie-ins to wet lab experiments they could conduct in the future to complement their computational approaches. This approach allowed us to continue using high impact CURE teaching, without changing our course learning goals. Quantitative data (including replicates) was collected and analyzed during regular class periods. Students developed evidence-based conclusions and related them to their research questions and hypotheses. Projects culminated in a presentation where faculty feedback was facilitated with the Virtual Presentation platform from QUBES20 These computational approaches are readily adaptable for topics accessible for first to senior year classes and individual research projects (UREs). We used them in both partial and full semester CUREs in various institutional settings. We believe this format can benefit faculty and students from a wide variety of teaching institutions under conditions where remote teaching is necessary. 
    more » « less
  3. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  4. null (Ed.)
    Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, a teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context. 
    more » « less
  5. Abstract

    Several models suggest ways to expose undergraduates at minority serving institutions or institutions with limited research infrastructures to the iterative process of research. Apprentice‐based research experiences allow students to work one‐on‐one with a research mentor in the hands‐on discovery process, but with teaching being a priority for faculty at the aforementioned institutions, financial, spatial, and time limitations for research progress exist. Course‐based undergraduate research experiences (CUREs) provide opportunities for a greater number of undergraduates to become familiar with the questions, techniques, and failure involved in research. However, designing projects that a group of students can complete in a semester can be challenging. Inclusive Research Education Communities are intended to promote retention in STEM courses for early college students but have limited benefit for upper‐level courses. We sought to create an iterative CURE between fall semester BIOL3900 at the University of North Texas and spring semester CHE397 at Bethel University (Saint Paul, MN) to promote collaboration between unique learning communities. The research goal was to use a tobacco (Nicotiana benthamiana) transient expression system as a platform to test gene functions and to engineer valuable bioproducts in plant vegetative tissues. The outcomes of this 2‐year integrative module included novel discoveries leading to publications in peer‐reviewed journals, cost benefits due to shared resources, continual movement of the project, course‐based training for future independent research projects, and improved student attitudes about research. © 2019 International Union of Biochemistry and Molecular Biology, 47(5):565–572, 2019.

     
    more » « less