skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing for Wellbeing: Worker-Generated Ideas on Adapting Algorithmic Management in the Hospitality Industry
Labor shortages have shaped many industries over the past several years, with hospitality experiencing one of the largest rates of attrition. Workers are leaving their jobs for a variety of reasons, ranging from burnout and work intensification to a lack of meaningful employment. While some literature maintains that labor-replacing automation is poised to bridge the shortages, we argue there is an opportunity for technology design to instead improve job quality and retention. Drawing on interviews with unionized guest room attendants, we report on workers’ perceptions of a widely-used algorithmic room assignment system. We then present worker-generated design ideas that adapt this system toward supporting three key facets of wellbeing: self-efficacy, transparency, and workload. We argue for the need to consider these facets of wellbeing through design across the service landscape, particularly as HCI attends to the impacts of AI and automation on frontline work.  more » « less
Award ID(s):
2128954
PAR ID:
10464185
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
NA
Date Published:
Journal Name:
ACM Designing Interactive Systems 2023
Volume:
na
Issue:
na
Page Range / eLocation ID:
623 to 637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Krueger, Dirk (Ed.)
    Abstract We argue theoretically and document empirically that aging leads to greater (industrial) automation, because it creates a shortage of middle-aged workers specializing in manual production tasks. We show that demographic change is associated with greater adoption of robots and other automation technologies across countries and with more robotics-related activities across U.S. commuting zones. We also document more automation innovation in countries undergoing faster aging. Our directed technological change model predicts that the response of automation technologies to aging should be more pronounced in industries that rely more on middle-aged workers and those that present greater opportunities for automation and that productivity should improve and the labor share should decline relatively in industries that are more amenable to automation. The evidence supports all four of these predictions. 
    more » « less
  2. This paper examines the rapid introduction of AI and automation technologies within essential industries amid the COVID-19 pandemic. Drawing on participant observation and interviews within two sites of waste labor in the United States, we consider the substantial effort performed by frontline workers who smooth the relationship between robotics and their social and material environment. Over the course of the research, we found workers engaged in continuous acts of calibration, troubleshooting, and repair required to support AI technologies over time. In interrogating these sites, we develop the concept of patchwork: human labor that occurs in the space between what AI purports to do and what it actually accomplishes. We argue that it is necessary to consider the often-undervalued frontline work that makes up for AI's shortcomings during implementation, particularly as CSCW increasingly turns to discussions of Human-AI collaboration. 
    more » « less
  3. The workplace has experienced extensive digital transformation, in part due to artificial intelligence's commercial availability. Though still an emerging technology, emotional artificial intelligence (EAI) is increasingly incorporated into enterprise systems to augment and automate organizational decisions and to monitor and manage workers. EAI use is often celebrated for its potential to improve workers' wellbeing and performance as well as address organizational problems such as bias and safety. Workers subject to EAI in the workplace are data subjects whose data make EAI possible and who are most impacted by it. However, we lack empirical knowledge about data subjects' perspectives on EAI, including in the workplace. To this end, using a relational ethics lens, we qualitatively analyzed 395 U.S. adults' open-ended survey (partly representative) responses regarding the perceived benefits and risks they associate with being subjected to EAI in the workplace. While participants acknowledged potential benefits of being subject to EAI (e.g., employers using EAI to aid their wellbeing, enhance their work environment, reduce bias), a myriad of potential risks overshadowed perceptions of potential benefits. Participants expressed concerns regarding the potential for EAI use to harm their wellbeing, work environment and employment status, and create and amplify bias and stigma against them, especially the most marginalized (e.g., along dimensions of race, gender, mental health status, disability). Distrustful of EAI and its potential risks, participants anticipated conforming to (e.g., partaking in emotional labor) or refusing (e.g., quitting a job) EAI implementation in practice. We argue that EAI may magnify, rather than alleviate, existing challenges data subjects face in the workplace and suggest that some EAI-inflicted harms would persist even if concerns of EAI's accuracy and bias are addressed. 
    more » « less
  4. null (Ed.)
    Crowdworkers depend on Amazon Mechanical Turk (AMT) as an important source of income and it is left to workers to determine which tasks on AMT are fair and worth completing. While there are existing tools that assist workers in making these decisions, workers still spend significant amounts of time finding fair labor. Difficulties in this process may be a contributing factor in the imbalance between the median hourly earnings ($2.00/hour) and what the average requester pays ($11.00/hour). In this paper, we study how novices and experts select what tasks are worth doing. We argue that differences between the two populations likely lead to the wage imbalances. For this purpose, we first look at workers' comments in TurkOpticon (a tool where workers share their experience with requesters on AMT). We use this study to start to unravel what fair labor means for workers. In particular, we identify the characteristics of labor that workers consider is of "good quality'' and labor that is of "poor quality'' (e.g., work that pays too little.) Armed with this knowledge, we then conduct an experiment to study how experts and novices rate tasks that are of both good and poor quality. Through our research we uncover that experts and novices both treat good quality labor in the same way. However, there are significant differences in how experts and novices rate poor quality labor, and whether they believe the poor quality labor is worth doing. This points to several future directions, including machine learning models that support workers in detecting poor quality labor, and paths for educating novice workers on how to make better labor decisions on AMT. 
    more » « less
  5. null (Ed.)
    This pictorial critically explores the role of visual media representations in the deployment of automated and artificially intelligent (AI) technologies within essential work sectors. We draw on an exhaustive review of local and national newspaper articles about automation in two waste labor industries (cleaning and recycling) over the last five years. We highlight a set of common visual tropes and move to challenge these representations by taking up the lens of countervisuality. Our analysis reveals that press photographs tend to focus on machines and the decision-makers who champion them, overlooking the work that it takes to integrate technology on the ground. Through our countervisuals, we depict the extensive efforts of waste workers to maintain AI technologies, and their potential for surveillance. Through visualizing under-recognized forms of labor that come after the design process ends, we highlight how an outsized emphasis on invention ignores waste workers’ expertise and needs over time. 
    more » « less