Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data. Typical solutions for this continual learning problem require extensive rehearsal of previously seen data, which increases memory costs and may violate data privacy. Recently, the emergence of large-scale pre-trained vision transformer models has enabled prompting approaches as an alternative to data-rehearsal. These approaches rely on a key-query mechanism to generate prompts and have been found to be highly resistant to catastrophic forgetting in the well-established rehearsal-free continual learning setting. However, the key mechanism of these methods is not trained end-to-end with the task sequence. Our experiments show that this leads to a reduction in their plasticity, hence sacrificing new task accuracy, and inability to benefit from expanded parameter capacity. We instead propose to learn a set of prompt components which are assembled with input-conditioned weights to produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme. Our experiments show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy. We also outperform the state of art by as much as 4.4% accuracy on a continual learning benchmark which contains both class-incremental and domain-incremental task shifts, corresponding to many practical settings.
more »
« less
Balancing Between Forgetting and Acquisition in Incremental Subpopulation Learning
The subpopulation shifting challenge, known as some subpopulations of a category that are not seen during training, severely limits the classification performance of the state-of-the-art convolutional neural networks. Thus, to mitigate this practical issue, we explore incremental subpopulation learning (ISL) to adapt the original model via incrementally learning the unseen subpopulations without retaining the seen population data. However, striking a great balance between subpopulation learning and seen population forgetting is the main challenge in ISL but is not well studied by existing approaches. These incremental learners simply use a pre-defined and fixed hyperparameter to balance the learning objective and forgetting regularization, but their learning is usually biased towards either side in the long run. In this paper, we propose a novel two-stage learning scheme to explicitly disentangle the acquisition and forgetting for achieving a better balance between subpopulation learning and seen population forgetting: in the first “gain-acquisition” stage, we progressively learn a new classifier based on the margin-enforce loss, which enforces the hard samples and population to have a larger weight for classifier updating and avoid uniformly updating all the population; in the second “counter-forgetting” stage, we search for the proper combination of the new and old classifiers by optimizing a novel objective based on proxies of forgetting and acquisition. We benchmark the representative and state-of-the-art non-exemplar-based incremental learning methods on a large-scale subpopulation shifting dataset for the first time. Under almost all the challenging ISL protocols, we significantly outperform other methods by a large margin, demonstrating our superiority to alleviate the subpopulation shifting problem (Code is released in https://github.com/wuyujack/ISL).
more »
« less
- PAR ID:
- 10464215
- Editor(s):
- Avidan, S.
- Date Published:
- Journal Name:
- Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science
- Volume:
- 13686
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Current deep learning architectures suffer from catastrophic forgetting, a failure to retain knowledge of previously learned classes when incrementally trained on new classes. The fundamental roadblock faced by deep learning methods is that the models are optimized as “black boxes,” making it difficult to properly adjust the model parameters to preserve knowledge about previously seen data. To overcome the problem of catastrophic forgetting, we propose utilizing an alternative “white box” architecture derived from the principle of rate reduction, where each layer of the network is explicitly computed without back propagation. Under this paradigm, we demonstrate that, given a pretrained network and new data classes, our approach can provably construct a new network that emulates joint training with all past and new classes. Finally, our experiments show that our proposed learning algorithm observes significantly less decay in classification performance, outperforming state of the art methods on MNIST and CIFAR-10 by a large margin and justifying the use of “white box” algorithms for incremental learning even for sufficiently complex image data.more » « less
-
Continual learning is a setting where machine learning models learn novel concepts from continuously shifting training data, while simultaneously avoiding degradation of knowledge on previously seen classes which may disappear from the training data for extended periods of time (a phenomenon known as the catastrophic forgetting problem). Current approaches for continual learning of a single expanding task (aka class-incremental continual learning) require extensive rehearsal of previously seen data to avoid this degradation of knowledge. Unfortunately, rehearsal comes at a cost to memory, and it may also violate data-privacy. Instead, we explore combining knowledge distillation and parameter regularization in new ways to achieve strong continual learning performance without rehearsal. Specifically, we take a deep dive into common continual learning techniques: prediction distillation, feature distillation, L2 parameter regularization, and EWC parameter regularization. We first disprove the common assumption that parameter regularization techniques fail for rehearsal-free continual learning of a single, expanding task. Next, we explore how to leverage knowledge from a pre-trained model in rehearsal-free continual learning and find that vanilla L2 parameter regularization outperforms EWC parameter regularization and feature distillation. Finally, we explore the recently popular ImageNet-R benchmark, and show that L2 parameter regularization implemented in self-attention blocks of a ViT transformer outperforms recent popular prompting for continual learning methods.more » « less
-
Supervised Continual learning involves updating a deep neural network (DNN) from an ever-growing stream of labeled data. While most work has focused on overcoming catastrophic forgetting, one of the major motivations behind continual learning is being able to efficiently update a network with new information, rather than retraining from scratch on the training dataset as it grows over time. Despite recent continual learning methods largely solving the catastrophic forgetting problem, there has been little attention paid to the efficiency of these algorithms. Here, we study recent methods for incremental class learning and illustrate that many are highly inefficient in terms of compute, memory, and storage. Some methods even require more compute than training from scratch! We argue that for continual learning to have real-world applicability, the research community cannot ignore the resources used by these algorithms. There is more to continual learning than mitigating catastrophic forgetting.more » « less
-
null (Ed.)People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND’s robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND’s generality by pioneering online learning for Visual Question Answering (VQA).more » « less
An official website of the United States government

