skip to main content


Title: Drought and Flood Extremes on the Amazon River and in Northeast Brazil, 1790–1900
Abstract

Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century.

Significance Statement

Proxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.

 
more » « less
NSF-PAR ID:
10464248
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
36
Issue:
20
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 7213-7229
Size(s):
["p. 7213-7229"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Instrumental observations indicate that Amazon precipitation and streamflow extremes have increased during the last 40 years, possibly due to anthropogenic changes and natural variability. How unprecedented these changes might be is difficult to determine because some paleoclimatic, instrumental, and climate model simulations suggest that Amazonian precipitation and streamflow may be subject to multidecadal variability with return intervals longer than most direct observations. A new 258‐yearlong tree‐ring chronology ofCedrela odoratahas been developed in the eastern Amazon and has been used to reconstruct wet season precipitation totals from 1759–2016. Reconstructed drought extremes are associated with significant sea surface temperature anomalies over the tropical Pacific and Atlantic Oceans. Strong multidecadal variance is identified in the reconstruction that may reflect a component of natural rainfall variability relevant to forest ecosystem dynamics and suggesting that recent hydroclimate changes over the eastern Amazon may not be unprecedented over the past 258 years.

     
    more » « less
  2. Abstract The recent intensification of floods and droughts in the Fraser River Basin (FRB) of British Columbia has had profound cultural, ecological, and economic impacts that are expected to be exacerbated further by anthropogenic climate change. In part due to short instrumental runoff records, the long-term stationarity of hydroclimatic extremes in this major North American watershed remains poorly understood, highlighting the need to use high-resolution paleoenvironmental proxies to inform on past streamflow. Here we use a network of tree-ring proxy records to develop 11 subbasin-scale, complementary flood- and drought-season reconstructions, the first of their kind. The reconstructions explicitly target management-relevant flood and drought seasons within each basin, and are examined in tandem to provide an expanded assessment of extreme events across the FRB with immediate implications for water management. We find that past high flood-season flows have been of greater magnitude and occurred in more consecutive years than during the observational record alone. Early 20th century low flows in the drought season were especially severe in both duration and magnitude in some subbasins relative to recent dry periods. Our Fraser subbasin-scale reconstructions provide long-term benchmarks for the natural flood and drought variability prior to anthropogenic forcing. These reconstructions demonstrate that the instrumental streamflow records upon which current management is based likely underestimate the full natural magnitude, duration, and frequency of extreme seasonal flows in the FRB, as well as the potential severity of future anthropogenically forced events. 
    more » « less
  3. Abstract

    Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.

     
    more » « less
  4. Abstract

    To aid California's water sector to better understand and manage future climate extremes, we present a method for creating a regionally consistent ensemble of plausible daily future climate and streamflow scenarios that represent natural climate variability captured in a network of tree‐ring chronologies, and then embed anthropogenic climate change trends within those scenarios. We use 600 years of paleo‐reconstructed weather regimes to force a stochastic weather generator, which we develop for five subbasins in the San Joaquin Valley of California. To assess the compound effects of climate change, we create temperature series that reflect projected scenarios of warming and precipitation series that have been scaled to reflect thermodynamically driven shifts in the distribution of daily precipitation. We then use these weather scenarios to force hydrologic models for each of the five subbasins. The paleo‐forced streamflow scenarios highlight periods in the region's past that produce flood and drought extremes that surpass those in the modern record and exhibit large non‐stationarity through the reconstruction. Variance decomposition is employed to characterize the contribution of natural variability and climate change to variability in decision‐relevant metrics related to floods and drought. Our results show that a large portion of variability in individual subbasin and spatially compounding extreme events can be attributed to natural variability, but that anthropogenic climate changes become more influential at longer planning horizons. The joint importance of climate change and natural variability in shaping extreme floods and droughts is critical to resilient water systems planning and management in the San Joaquin.

     
    more » « less
  5. Abstract

    Extreme precipitation and consequent floods are some of California's most damaging natural disasters, but they are also critical to the state's water supply. This motivates the need to better understand the long‐term variability of these events across the region. This study examines the possibility of reconstructing extreme precipitation occurrences in the Sacramento River Watershed (SRW) of Northern California using a network of tree‐ring based moisture proxies across the Western US. We first develop a gridded reconstruction of the cold‐season standardized precipitation index (SPI) west of 100°W. We then develop an annual index of regional extreme precipitation occurrences in the SRW and use elastic net regression to relate that index to the gridded, tree‐ring based SPI. These regressions, built using SPI data across the SRW only and again across a broader region of the Western US, are used to develop reconstructions of interannual variability in extreme precipitation frequency back to 1400 CE. The SPI reconstruction is skillful across much of the West, including the Sacramento Valley and Central Oregon. The reconstructed SPI also captures historical interannual variations in extreme SRW precipitation, although individual events may be under‐ or over‐estimated. The reconstructions show more SRW extremes from 1580 to 1700 and 1850 to 1915, a dearth of extremes prior to 1550, and a 2–8 year oscillation after 1550. Using tree‐ring proxies beyond the SRW often dampens the reconstructed extremes, but these data occasionally help to identify known extreme events. Overall, reconstructions of SRW extreme precipitation can help to understand better the historic variability of these events.

     
    more » « less