skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging rotational energy transfer: comparative stereodynamics in CO + N 2 and CO + CO inelastic scattering
State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13 CO molecules with N 2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13 CO + CO rotationally inelastic scattering described in a previously published report (Sun et al. , Science , 2020, 369 , 307–309). The collisionally excited 13 CO molecule products are detected by the same (1 + 1′ + 1′′) VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13 CO + N 2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13 CO–N 2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13 CO–N 2 potential energy surface for the 1460 cm −1 collision energy studied by experiment. Experimental results for 13 CO + N 2 are compared with those for 13 CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13 CO + CO measurements, the primary rainbow maximum in the DCSs for 13 CO + N 2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13 CO–N 2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13 CO + CO does not appear for 13 CO–N 2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13 CO + N 2 trajectories compared to 13 CO + CO trajectories, which shows the special ‘do-si-do’ pathway invoked for 13 CO + CO is not effective for 13 CO + N 2 collisions.  more » « less
Award ID(s):
1955239
PAR ID:
10464264
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
27
ISSN:
1463-9076
Page Range / eLocation ID:
17828 to 17839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A combined experimental and theoretical study of quantum state-resolved rotational energy transfer kinetics of optically centrifuged CO molecules is presented. In the experiments, inverted rotational distributions of CO in rotational states up to J=80 were prepared using two different optical centrifuge traps, one with the full spectral bandwidth of the optical centrifuge pulses, and one with reduced bandwidth. The relaxation kinetics of the high-J tail of the inverted distribution from each optical trap was determined based on high-resolution transient IR absorption measurements. In parallel studies, master equation simulations were performed using state-to-state rate constants for CO-CO collisions in states up to J=90, based on data from double-resonance experiments for CO with J=0-29 and a fit to a statistical power exponential gap model. The model is in qualitative agreement with the observed relaxation profiles, but the observed decay rate constants are smaller than the simulated values by as much as a factor of 10. The observed decay rate constants also have a stronger J-dependence than predicted by the model. The results are discussed in terms of angular momentum and energy conservation, and compared to the observed orientational anisotropy decay kinetics of optically centrifuged CO molecules. Models for rotational energy transfer could be improved by including angular momentum effects. 
    more » « less
  2. We present a comprehensive quantum mechanical study of stereodynamic control of HD + He and D2 + He collisions that have been probed experimentally by Perreault et al. [J. Phys. Chem. Lett. 13, 10912 (2022)] using Stark-induced adiabatic Raman passage (SARP) techniques. Our calculations utilize a highly accurate full-dimensional H2 + He interaction potential with diagonal Born–Oppenheimer correction appropriate for HD and D2 isotopomers. The results show that rotational quenching of HD from j = 2 → j′ = 0 in v = 2, j = 2 → j′ = 1 in v = 2 and v = 4, and j = 4 → j′ = 3 in v = 4 is dominated by an l = 1 shape resonance located between 0.1 and 1.0 cm−1. For collision energies less than 0.1 cm−1, isotropic scattering prevails. An l = 1 resonance centered around 0.02 cm−1 is also found to dominate the j = 2 → j′ = 0 and j = 4 → j′ = 2 transitions in v = 4 for He–D2 collisions consistent with our prior studies of Δj = −2 transition in He + D2(v = 2, j = 2) collisions. Our analysis does not support the hypothesis of Perreault et al. [J. Phys. Chem. Lett. 13, 10912 (2022)] that a strong l = 2 resonance controls the angular distribution for Δj = −2 transition for both systems. Despite improvements in the development of the potential energy surface, a good agreement with SARP experiments for v = 2 is achieved only when contributions from collision energies less than 1.0 cm−1 were excluded in the computation of velocity averaged differential rate coefficients for both systems. This could be due to some uncertainties in the velocity spread in the experiment that employs co-propagation of the collision partners and possibly, the neglect of transverse velocities in the simulation of the experiment. 
    more » « less
  3. null (Ed.)
    Knowledge of rotational energy transfer (RET) involving carbon monoxide (CO) molecules is crucial for the interpretation of astrophysical data. As of now, our nearly perfect understanding of atom-molecule scattering shows that RET usually occurs by only a simple “bump” between partners. To advance molecular dynamics to the next step in complexity, we studied molecule-molecule scattering in great detail for collision between two CO molecules. Using advanced imaging methods and quasi-classical and fully quantum theory, we found that a synchronous movement can occur during CO-CO collisions, whereby a bump is followed by a move similar to a “do-si-do” in square dancing. This resulted in little angular deflection but high RET to both partners, a very unusual combination. The associated conditions suggest that this process can occur in other molecule-molecule systems. 
    more » « less
  4. The effects of hyperfine structure on ultracold molecular collisions in external fields are largely unexplored due to major computational challenges associated with rapidly proliferating hyperfine and rotational channels coupled by highly anisotropic intermolecular interactions. We explore a new basis set for incorporating the effects of hyperfine structure and external magnetic fields in quantum scattering calculations on ultracold molecular collisions. The basis is composed of direct products of the eigenfunctions of the total {\it rotational} angular momentum (TRAM) of the collision complex Jr and the electron/nuclear spin basis functions of the collision partners. The separation of the rotational and spin degrees of freedom ensures rigorous conservation of Jr even in the presence of external magnetic fields and isotropic hyperfine interactions. The resulting block-diagonal structure of the scattering Hamiltonian enables coupled-channel calculations on highly anisotropic atom-molecule and molecule-molecule collisions to be performed independently for each value of Jr, with an added advantage of eliminating the unphysical states present in the total angular momentum representation. We illustrate the efficiency of the TRAM basis by calculating state-to-state cross sections for ultracold He + YbF collisions in a magnetic field. The size of the TRAM basis required to reach numerical convergence is 8 times smaller than that of the uncoupled basis used previously, providing a computational gain of three orders of magnitude. The TRAM basis is therefore well suited for rigorous quantum scattering calculations on ultracold molecular collisions in the presence of hyperfine interactions and external magnetic fields. 
    more » « less
  5. Resonant scattering of highly vibrationally excited and aligned D2 in cold collisions with Ne has recently been probed experimentally using the Stark-induced adiabatic Raman passage technique [Perreault et al., J. Chem. Phys. 157, 144301 (2022)]. A partial-wave analysis and numerical fitting of the experimental data attributed the measured angular distribution to an l = 2 shape resonance near Ec/kB = 1 K (≈0.7 cm−1). Here, we report the computation of a new potential energy surface for the Ne–H2 interaction suitable for the study of collisions between highly vibrationally excited H2/D2 with Ne as well as quantum scattering calculations of stereodynamics of D2 (v = 4, j = 2) + Ne collisions probing Δj = −2 rotational transition in D2. Our results show that collisions are dominated by a strong l = 5 resonance near 3 K (≈2.09 cm−1) and a weaker l = 6 resonance near 8 K (≈5.56 cm−1) and not an l = 2 resonance, as suggested in the analysis of the experimental data. A reasonable agreement between our calculations and the experiments is obtained only when an artificial energy cutoff is applied to the integral over the collision energy to exclude contributions from the l = 5 resonance while retaining contributions from l = 0, 1, and 2. However, our calculations do not support the claim that the measured angular distributions are dominated by a single l = 2 partial-wave resonance characteristic of orbiting collisions. 
    more » « less