skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 14, 2026

Title: Stereodynamics of cold HD and D2 collisions with He
We present a comprehensive quantum mechanical study of stereodynamic control of HD + He and D2 + He collisions that have been probed experimentally by Perreault et al. [J. Phys. Chem. Lett. 13, 10912 (2022)] using Stark-induced adiabatic Raman passage (SARP) techniques. Our calculations utilize a highly accurate full-dimensional H2 + He interaction potential with diagonal Born–Oppenheimer correction appropriate for HD and D2 isotopomers. The results show that rotational quenching of HD from j = 2 → j′ = 0 in v = 2, j = 2 → j′ = 1 in v = 2 and v = 4, and j = 4 → j′ = 3 in v = 4 is dominated by an l = 1 shape resonance located between 0.1 and 1.0 cm−1. For collision energies less than 0.1 cm−1, isotropic scattering prevails. An l = 1 resonance centered around 0.02 cm−1 is also found to dominate the j = 2 → j′ = 0 and j = 4 → j′ = 2 transitions in v = 4 for He–D2 collisions consistent with our prior studies of Δj = −2 transition in He + D2(v = 2, j = 2) collisions. Our analysis does not support the hypothesis of Perreault et al. [J. Phys. Chem. Lett. 13, 10912 (2022)] that a strong l = 2 resonance controls the angular distribution for Δj = −2 transition for both systems. Despite improvements in the development of the potential energy surface, a good agreement with SARP experiments for v = 2 is achieved only when contributions from collision energies less than 1.0 cm−1 were excluded in the computation of velocity averaged differential rate coefficients for both systems. This could be due to some uncertainties in the velocity spread in the experiment that employs co-propagation of the collision partners and possibly, the neglect of transverse velocities in the simulation of the experiment.  more » « less
Award ID(s):
2409497
PAR ID:
10595617
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
10
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resonant scattering of highly vibrationally excited and aligned D2 in cold collisions with Ne has recently been probed experimentally using the Stark-induced adiabatic Raman passage technique [Perreault et al., J. Chem. Phys. 157, 144301 (2022)]. A partial-wave analysis and numerical fitting of the experimental data attributed the measured angular distribution to an l = 2 shape resonance near Ec/kB = 1 K (≈0.7 cm−1). Here, we report the computation of a new potential energy surface for the Ne–H2 interaction suitable for the study of collisions between highly vibrationally excited H2/D2 with Ne as well as quantum scattering calculations of stereodynamics of D2 (v = 4, j = 2) + Ne collisions probing Δj = −2 rotational transition in D2. Our results show that collisions are dominated by a strong l = 5 resonance near 3 K (≈2.09 cm−1) and a weaker l = 6 resonance near 8 K (≈5.56 cm−1) and not an l = 2 resonance, as suggested in the analysis of the experimental data. A reasonable agreement between our calculations and the experiments is obtained only when an artificial energy cutoff is applied to the integral over the collision energy to exclude contributions from the l = 5 resonance while retaining contributions from l = 0, 1, and 2. However, our calculations do not support the claim that the measured angular distributions are dominated by a single l = 2 partial-wave resonance characteristic of orbiting collisions. 
    more » « less
  2. To accurately map weak D2–Ne long-range interactions, we have studied rotationally inelastic cold scattering of D2 prepared in the vibrationally excited (v = 4) and rotationally aligned (j = 2, m) quantum state within the moving frame of a supersonically expanded mixed molecular beam. In contrast to earlier high energy D2–Ne collision experiments, the (j = 2 → j′ = 0) cold scattering produced highly symmetric angular distributions that strongly suggest a resonant quasi-bound collision complex that lives long enough to make a few rotations. Our partial wave analysis indicates that the scattering dynamics is dominated by a single resonant l = 2 orbital, even in the presence of a broad temperature (0–5 K) distribution that allows incoming orbitals up to l = 5. The dominance of a single orbital suggests that the resonant complex stabilizes through the coupling of the internal (j = 2) and orbital (l = 2) angular momentum to produce a total angular momentum of J = 0 for the D2–Ne complex. 
    more » « less
  3. null (Ed.)
    Recently, Gallo et al. ( Chem. Sci., 2019, 10, 2566) investigated whether the previously reported oligomerization of isoprene vapor on the surface of pH < 4 water in an electrospray ionization (ESI) mass spectrometer ( J. Phys. Chem. A, 2012, 116, 6027 and Phys. Chem. Chem. Phys., 2018, 20, 15400) would also proceed in liquid isoprene–acidic water emulsions. Gallo et al. hypothesized that emulsified liquid isoprene would oligomerize on the surface of acidic water because, after all, isoprene, liquid or vapor, is always a hydrophobe. In their emulsion experiments, isoprene oligomers were to be detected by ex situ proton magnetic resonance ( 1 H-NMR) spectrometry. 
    more » « less
  4. Abstract There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We present quantum mechanical and semiclassical calculations of the elastic scattering differential cross sections and rate coefficients of the C60fullerene with He and Ar noble-gas atoms in order to quantify the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion coefficients have been computed from frequency dependent polarizabilities of C60and the noble-gas atoms. We find that the potential of the fullerene with He is about five times shallower than that with Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have computed differential cross sections at the collision energies used in experiments by Han et al. (Chem Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory agreement for C60scattering with Ar. 
    more » « less
  5. Correction for ‘Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: ν 3 / ν 4 CH stretch modes and CH 2 internal rotor dynamics of benzyl radical’ by A. Kortyna et al. , Phys. Chem. Chem. Phys. , 2017, 19 , 29812–29821. 
    more » « less