skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis
Although the importance of using static taint analysis to detect taint-style vulnerabilities in Linux-based embedded firmware is widely recognized, existing approaches are plagued by following major limitations: (a) Existing works cannot properly handle indirect call on the path from attacker-controlled sources to security-sensitive sinks, resulting in lots of false negatives. (b) They employ heuristics to identify mediate taint source and it is not accurate enough, which leads to high false positives. To address issues, we propose EmTaint, a novel static approach for accurate and fast detection of taint-style vulnerabilities in Linux-based embedded firmware. In EmTaint, we first design a structured symbolic expression-based (SSE-based) on-demand alias analysis technique. Based on it, we come up with indirect call resolution and accurate taint analysis scheme. Combined with sanitization rule checking, EmTaint can eventually discovers a large number of taint-style vulnerabilities accurately within a limited time. We evaluated EmTaint against 35 real-world embedded firmware samples from six popular vendors. The result shows EmTaint discovered at least 192 vulnerabilities, including 41 n-day vulnerabilities and 151 0-day vulnerabilities. At least 115 CVE/PSV numbers have been allocated from a subset of the reported vulnerabilities at the time of writing. Compared with state-of-the-art tools such as KARONTE and SaTC, EmTaint found significantly more vulnerabilities on the same dataset in less time.  more » « less
Award ID(s):
2019340
PAR ID:
10464279
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proc. of the ACM SIGSOFT International Symposium on Software Testing and Analysis
Page Range / eLocation ID:
360 to 372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To study the security properties of the Internet of Things (IoT), firmware analysis is crucial. In the past, many works have been focused on analyzing Linux-based firmware. Less known is the security landscape of MCU-based IoT devices, an essential portion of the IoT ecosystem. Existing works on MCU firmware analysis either leverage the companion mobile apps to infer the security properties of the firmware (thus unable to collect low-level properties) or rely on small-scale firmware datasets collected in ad-hoc ways (thus cannot be generalized). To fill this gap, we create a large dataset of MCU firmware for real IoT devices. Our approach statically analyzes how MCU firmware is distributed and then captures the firmware. To reliably recognize the firmware, we develop a firmware signature database, which can match the footprints left in the firmware compilation and packing process. In total, we obtained 8,432 confirmed firmware images (3,692 unique) covering at least 11 chip vendors across 7 known architectures and 2 proprietary architectures. We also conducted a series of static analyses to assess the security properties of this dataset. The result reveals three disconcerting facts: 1) the lack of firmware protection, 2) the existence of N-day vulnerabilities, and 3) the rare adoption of security mitigation. 
    more » « less
  2. Cross-site scripting (XSS) vulnerabilities are the most frequently reported web application vulnerability. As com- plex JavaScript applications become more widespread, DOM (Document Object Model) XSS vulnerabilities—a type of XSS vulnerability where the vulnerability is located in client-side JavaScript, rather than server-side code—are becoming more common. As the first contribution of this work, we empirically assess the impact of DOM XSS on the web using a browser with taint tracking embedded in the JavaScript engine. Building on the methodology used in a previous study that crawled popular websites, we collect a current dataset of potential DOM XSS vulnerabilities. We improve on the methodology for confirming XSS vulnerabilities, and using this improved methodology, we find 83% more vulnerabilities than previous methodology applied to the same dataset. As a second contribution, we identify the causes of and discuss how to prevent DOM XSS vulnerabilities. One example of our findings is that custom HTML templating designs—a design pattern that could prevent DOM XSS vulnerabilities analogous to parameterized SQL—can be buggy in practice, allowing DOM XSS attacks. As our third contribution, we evaluate the error rates of three static-analysis tools to detect DOM XSS vulnerabilities found with dynamic analysis techniques using in-the-wild examples. We find static-analysis tools to miss 90% of bugs found by our dynamic analysis, though some tools can have very few false positives and at the same time find vulnerabilities not found using the dynamic analysis. 
    more » « less
  3. Millions of software projects leverage automated workflows, like GitHub Actions, for performing common build and deploy tasks. While GitHub Actions have greatly improved the software build process for developers, they pose significant risks to the software supply chain by adding more dependencies and code complexity that may introduce security bugs. This paper presents ARGUS, the first static taint analysis system for identifying code injection vulnerabilities in GitHub Actions. We used ARGUS to perform a large-scale evaluation on 2,778,483 Workflows referencing 31,725 Actions and discovered critical code injection vulnerabilities in 4,307 Workflows and 80 Actions. We also directly compared ARGUS to two existing pattern-based GitHub Actions vulnerability scanners, demonstrating that our system exhibits a marked improvement in terms of vulnerability detection, with a discovery rate more than seven times (7x) higher than the state-of-the-art approaches. These results demonstrate that command injection vulnerabilities in the GitHub Actions ecosystem are not only pervasive but also require taint analysis to be detected. 
    more » « less
  4. Millions of software projects leverage automated workflows, like GitHub Actions, for performing common build and deploy tasks. While GitHub Actions have greatly improved the software build process for developers, they pose significant risks to the software supply chain by adding more dependencies and code complexity that may introduce security bugs. This paper presents ARGUS, the first static taint analysis system for identifying code injection vulnerabilities in GitHub Actions. We used ARGUS to perform a large-scale evaluation on 2,778,483 Workflows referencing 31,725 Actions and discovered critical code injection vulnerabilities in 4,307 Workflows and 80 Actions. We also directly compared ARGUS to two existing pattern-based GitHub Actions vulnerability scanners, demonstrating that our system exhibits a marked improvement in terms of vulnerability detection, with a discovery rate more than seven times (7x) higher than the state-of-the-art approaches. These results demonstrate that command injection vulnerabilities in the GitHub Actions ecosystem are pervasive and require taint analysis to be detected. 
    more » « less
  5. null (Ed.)
    Today, Bluetooth 4.0, also known as Bluetooth Low Energy (BLE), has been widely used in many IoT devices (e.g., smart locks, smart sensors, and wearables). However, BLE devices could contain a number of vulnerabilities at the BLE link layer during broadcasting, pairing, and message transmission. To detect these vulnerabilities directly from the bare-metal firmware, we present FirmXRay, the first static binary analysis tool with a set of enabling techniques including a novel base address identification algorithm for robust firmware disassembling, precise data structure recognition, and configuration value resolution. As a proof-of-concept, we focus on the BLE firmware from two leading SoC vendors (i.e., Nordic and Texas Instruments), and implement a prototype of FirmXRay atop Ghidra. We have evaluated FirmXRay with 793 unique firmware (corresponding to 538 unique devices) collected using a mobile app based approach, and our experiment results show that 98.1% of the devices have configured random static MAC addresses, 71.5% Just Works pairing, and 98.5% insecure key exchanges. With these vulnerabilities, we demonstrate identity tracking, spoofing, and eavesdropping attacks on real-world BLE devices. 
    more » « less