Applications of configuration-mixing methods for nuclei near the proton and neutron drip lines are discussed. A short review of magic numbers is presented. Prospects for advances in the regions of four new “outposts” are highlighted: 28O, 42Si, 60Ca and 78Ni. Topics include shell gaps, single-particle properties, islands of inversion, collectivity, neutron decay, neutron halos, two-proton decay, effective charge, and quenching in knockout reactions. 
                        more » 
                        « less   
                    
                            
                            Expanding the limits of nuclear stability at finite temperature
                        
                    
    
            Abstract Properties of nuclei in hot stellar environments such as supernovae or neutron star mergers are largely unexplored. Since it is poorly understood how many protons and neutrons can be bound together in hot nuclei, we investigate the limits of nuclear existence (drip lines) at finite temperature. Here, we present mapping of nuclear drip lines at temperatures up to around 20 billion kelvins using the relativistic energy density functional theory (REDF), including treatment of thermal scattering of nucleons in the continuum. With extensive computational effort, the drip lines are determined using several REDFs with different underlying interactions, demonstrating considerable alterations of the neutron drip line with temperature increase, especially near the magic numbers. At temperatures T  ≲ 12 billion kelvins, the interplay between the properties of nuclear effective interaction, pairing, and temperature effects determines the nuclear binding. At higher temperatures, we find a surprizing result that the total number of bound nuclei increases with temperature due to thermal shell quenching. Our findings provide insight into nuclear landscape for hot nuclei, revealing that the nuclear drip lines should be viewed as limits that change dynamically with temperature. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927130
- PAR ID:
- 10464353
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A device for measuring a plurality of material properties is designed to include accurate sensors configured to consecutively obtain thermal conductivity, electrical conductivity, and Seebeck coefficient of a single sample while maintaining a vacuum or inert gas environment. Four major design factors are identified as sample-heat spreader mismatch, radiation losses, parasitic losses, and sample surface temperature variance. The design is analyzed using finite element methods for high temperature ranges up to 1000°C as well as ultra-high temperatures up to 2500°C. A temperature uncertainty of 0.46% was estimated for a sample with cold and hot sides at 905.1 and 908.5°C, respectively. The uncertainty at 1000°C was calculated to be 0.7% for a ?T of 5°C between the hot and cold sides. The thermal conductivity uncertainty was calculated to be -8.6% at ~900°C for a case with radiative gains, and +8.2% at ~1000°C for a case with radiative losses, indicating the sensitivity of the measurement to the temperature of the thermal guard in relation to the heat spreader and sample temperature. Lower limits of -17 and -13% error in thermal conductivity measurements were estimated at the ultra-high temperature of ~2500°C for a single-stage and double-stage radiation shield, respectively. It is noted that this design is not limited to electro-thermal characterization and will enable measurement of ionic conductivity and surface temperatures of energy materials under realistic operating conditions in extreme temperature environments.more » « less
- 
            Abstract At the low temperature and high density conditions of a neutron star crust neutrons are degenerate. In this work, we study the effect of this degeneracy on the capture rates of neutrons on neutron rich nuclei in accreted crusts. We use a statistical Hauser–Feshbach model to calculate neutron capture rates and find that neutron degeneracy can increase rates significantly. Changes increase from a factor of a few to many orders of magnitude near the neutron drip line. We also quantify uncertainties due to model inputs for masses,γ-strength functions, and level densities. We find that uncertainties increase dramatically away from stability and that degeneracy tends to increase these uncertainties further, except for cases near the neutron drip line where degeneracy leads to more robustness. As in the case of capture of classically distributed neutrons, variations in the mass model have the strongest impact. Corresponding variations in the reaction rates can be as high as 3–4 orders of magnitude, and be more than 5 times larger than under classical conditions. To ease the incorporation of neutron degeneracy in nucleosynthesis networks, we provide tabulated results of capture rates as well as analytical expressions as function of temperature and neutron chemical potential, for proton numbers between 3 ≤Z≤ 85, derived from fits to our numerical results. Fits are based on a new parametrization that complements previously employed power law approximations with additional Lorentzian terms that account for low energy resonances, significantly improving accuracy.more » « less
- 
            The field of nuclear science has considerably advanced since its begin- ning just over a century ago. Today, the science of rare isotopes is on the cusp of a new era with theoretical and computing advances comple- menting experimental capabilities at new facilities internationally. In this article we present a vision for the science of rare isotope beams (RIBs). We do not attempt to cover the full breadth of the field, but rather provide a perspective and address a selection of topics that re- flect our own interests and expertise. We focus in particular on systems near the drip lines, where one often finds nuclei that are referred to as “exotic,” and where the role of the “nuclear continuum” is only just starting to be explored. An important aspect of this article is the at- tempt to highlight the crucial connections between nuclear structure and nuclear reactions required to fully interpret and leverage the rich data to be collected in the next years at RIB facilities. Further, we con- nect the e↵orts in structure and reactions to key questions of nuclear astrophysics.more » « less
- 
            The field of nuclear science has considerably advanced since its beginning just over a century ago. Today, the science of rare isotopes is on the cusp of a new era with theoretical and computing advances complementing experimental capabilities at new facilities internationally. In this article we present a vision for the science of rare isotope beams (RIBs). We do not attempt to cover the full breadth of the field; rather, we provide a perspective and address a selection of topics that reflect our own interests and expertise. We focus in particular on systems near the drip lines, where one often finds nuclei that are referred to as exotic and where the role of the nuclear continuum is only just starting to be explored. An important aspect of this article is its attempt to highlight the crucial connections between nuclear structure and the nuclear reactions required to fully interpret and leverage the rich data to be collected in the next years at RIB facilities. Further, we connect the efforts in structure and reactions to key questions of nuclear astrophysics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    