Abstract Properties of nuclei in hot stellar environments such as supernovae or neutron star mergers are largely unexplored. Since it is poorly understood how many protons and neutrons can be bound together in hot nuclei, we investigate the limits of nuclear existence (drip lines) at finite temperature. Here, we present mapping of nuclear drip lines at temperatures up to around 20 billion kelvins using the relativistic energy density functional theory (REDF), including treatment of thermal scattering of nucleons in the continuum. With extensive computational effort, the drip lines are determined using several REDFs with different underlying interactions, demonstrating considerable alterations of the neutron drip line with temperature increase, especially near the magic numbers. At temperatures T  ≲ 12 billion kelvins, the interplay between the properties of nuclear effective interaction, pairing, and temperature effects determines the nuclear binding. At higher temperatures, we find a surprizing result that the total number of bound nuclei increases with temperature due to thermal shell quenching. Our findings provide insight into nuclear landscape for hot nuclei, revealing that the nuclear drip lines should be viewed as limits that change dynamically with temperature. 
                        more » 
                        « less   
                    
                            
                            Capture rates of highly degenerate neutrons
                        
                    
    
            Abstract At the low temperature and high density conditions of a neutron star crust neutrons are degenerate. In this work, we study the effect of this degeneracy on the capture rates of neutrons on neutron rich nuclei in accreted crusts. We use a statistical Hauser–Feshbach model to calculate neutron capture rates and find that neutron degeneracy can increase rates significantly. Changes increase from a factor of a few to many orders of magnitude near the neutron drip line. We also quantify uncertainties due to model inputs for masses,γ-strength functions, and level densities. We find that uncertainties increase dramatically away from stability and that degeneracy tends to increase these uncertainties further, except for cases near the neutron drip line where degeneracy leads to more robustness. As in the case of capture of classically distributed neutrons, variations in the mass model have the strongest impact. Corresponding variations in the reaction rates can be as high as 3–4 orders of magnitude, and be more than 5 times larger than under classical conditions. To ease the incorporation of neutron degeneracy in nucleosynthesis networks, we provide tabulated results of capture rates as well as analytical expressions as function of temperature and neutron chemical potential, for proton numbers between 3 ≤Z≤ 85, derived from fits to our numerical results. Fits are based on a new parametrization that complements previously employed power law approximations with additional Lorentzian terms that account for low energy resonances, significantly improving accuracy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927130
- PAR ID:
- 10527797
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics G: Nuclear and Particle Physics
- Volume:
- 51
- Issue:
- 9
- ISSN:
- 0954-3899
- Format(s):
- Medium: X Size: Article No. 095201
- Size(s):
- Article No. 095201
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Context.Accurate42Ti(p,γ)43V reaction rates are crucial for understanding the nucleosynthesis path of the rapid capture process (rpprocess) that occurs in X-ray bursts. Aims.We aim to improve the thermonuclear rates of42Ti(p,γ)43V based on more complete resonance information and a more accurate direct component, together with the recently released nuclear masses data. We also explore the impact of the newly obtained rates on therpprocess. Methods.We reevaluated the reaction rate of42Ti(p,γ)43V by the sum of the isolated resonance contribution instead of the Hauser-Feshbach statistical model. We used a Monte Carlo method to derive the associated uncertainties of new rates. The nucleosynthesis simulations were performed via the NuGrid post-processing code ppn. Results.The new rates differ from previous estimations due to the use of a series of updated resonance parameters and a direct S factor. Compared with the previous results from the Hauser-Feshbach statistical model, which assumes compound nucleus43V with a sufficiently high-level density in the energy region of astrophysical interest, large differences exist over the entire temperature region ofrp-process interest, up to two orders of magnitude. We consistently calculated the photodisintegration rate using our new nuclear masses via the detailed balance principle, and found the discrepancies among the different reverse rates are much larger than those for the forward rate, up to ten orders of magnitude at the temperature of 108K. Using a trajectory with a peak temperature of 1.95×109K, we performed therp-process nucleosynthesis simulations to investigate the impact of the new rates. Our calculations show that the adoption of the new forward and reverse rates result in abundance variations for Sc and Ca of 128% and 49%, respectively, compared to the variations for the statistical model rates. On the other hand, the overall abundance pattern is not significantly affected. The results of using new rates also confirm that therp-process path does not bypass the isotope43V. Conclusions.Our study found that the Hauser-Feshbach statistical model is inappropriate to the reaction rate evaluation for42Ti(p,γ)43V. The adoption of the new rates confirms that the reaction path of42Ti(p,γ)43V(p,γ)44Cr(β+)44V is a key branch of therpprocess in X-ray bursts.more » « less
- 
            Abstract A clear definition of the contribution from the slow neutron-capture process (s process) to the solar abundances between Fe and the Sr-Zr region is a crucial challenge for nuclear astrophysics. Robust s-process predictions are necessary to disentangle the contribution from other stellar processes producing elements in the same mass region. Nuclear uncertainties are affecting s-process calculations, but most of the needed nuclear input are accessible to present nuclear experiments or they will be in the near future. Neutron-capture rates have a great impact on the s process in massive stars, which is a fundamental source for the solar abundances of the lighter s-process elements heavier than Fe (weak s-process component). In this work we present a new nuclear sensitivity study to explore the impact on the s process in massive stars of 86 neutron-capture rates, including all the reactions between C and Si and between Fe and Zr. We derive the impact of the rates at the end of the He-burning core and at the end of the C-burning shell, where the$$^{22}$$ Ne($$\alpha $$ ,n)$$^{25}$$ Mg reaction is is the main neutron source. We confirm the relevance of the light isotopes capturing neutrons in competition with the Fe seeds as a crucial feature of the s process in massive stars. For heavy isotopes we study the propagation of the neutron-capture uncertainties, finding a clear difference of the impact of Fe and Co isotope rates with respect to the rates of heavier stable isotopes. The local uncertainty propagation due to the neutron-capture rates at the s-process branching points is also considered, discussing the example of$$^{85}$$ Kr. The complete results of our study for all the 86 neutron-capture rates are available online. Finally, we present the impact on the weak s process of the neutron-capture rates included in the new ASTRAL library (v0.2).more » « less
- 
            We use quantum electrodynamics and the confinement-induced nonlocal dielectric response model based on the Keldysh-Rytova electron interaction potential to study the epsilon-near-zero modes of metallic films in the transdimensional regime. Peculiar effects are revealed such as the plasmon mode degeneracy lifting and the dipole emitter coupling to the split epsilon-near-zero modes, leading to thickness-controlled spontaneous decay with rates increased by up to three orders of magnitude.more » « less
- 
            A compact high-flux, short-pulse neutron source would have applications from nuclear astrophysics to cancer therapy. Laser-driven neutron sources can achieve fluxes much higher than spallation and reactor neutron sources by reducing the volume and time in which the neutron-producing reactions occur by orders of magnitude. We report progress towards an efficient laser-driven neutron source in experiments with a cryogenic deuterium jet on the Texas Petawatt laser. Neutrons were produced both by laser-accelerated multi-MeV deuterons colliding with Be and mixed metallic catchers and by d ( d , n ) 3 He fusion reactions within the jet. We observed deuteron yields of 10 13 /shot in quasi-Maxwellian distributions carrying ∼ 8 − 10 % of the input laser energy. We obtained neutron yields greater than 10 10 /shot and found indications of a deuteron-deuteron fusion neutron source with high peak flux ( > 1 0 22 cm −2 s −1 ). The estimated fusion neutron yield in our experiment is one order of magnitude higher than any previous laser-induced dd fusion reaction. Though many technical challenges will have to be overcome to convert this proof-of-principle experiment into a consistent ultra-high flux neutron source, the neutron fluxes achieved here suggest laser-driven neutron sources can support laboratory study of the rapid neutron-capture process, which is otherwise thought to occur only in astrophysical sites such as core-collapse supernova, and binary neutron star mergers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
