skip to main content


This content will become publicly available on August 1, 2024

Title: Mass measurements show slowdown of rapid proton capture process at waiting-point nucleus 64Ge
Abstract X-ray bursts are among the brightest stellar objects frequently observed in the sky by space-based telescopes. A type-I X-ray burst is understood as a violent thermonuclear explosion on the surface of a neutron star, accreting matter from a companion star in a binary system. The bursts are powered by a nuclear reaction sequence known as the rapid proton capture process (rp process), which involves hundreds of exotic neutron-deficient nuclides. At so-called waiting-point nuclides, the process stalls until a slower β + decay enables a bypass. One of the handful of rp process waiting-point nuclides is 64 Ge, which plays a decisive role in matter flow and therefore the produced X-ray flux. Here we report precision measurements of the masses of 63 Ge, 64,65 As and 66,67 Se—the relevant nuclear masses around the waiting-point 64 Ge—and use them as inputs for X-ray burst model calculations. We obtain the X-ray burst light curve to constrain the neutron-star compactness, and suggest that the distance to the X-ray burster GS 1826–24 needs to be increased by about 6.5% to match astronomical observations. The nucleosynthesis results affect the thermal structure of accreting neutron stars, which will subsequently modify the calculations of associated observables.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10464371
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Physics
Volume:
19
Issue:
8
ISSN:
1745-2473
Page Range / eLocation ID:
1091 to 1097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    In Type-I X-ray bursts (XRBs), the rapid-proton capture (rp-) process passes through the NiCu and ZnGa cycles before reaching the region above Ge and Se isotopes that hydrogen burning actively powers the XRBs. The sensitivity study performed by Cyburt et al . [1] shows that the 57 Cu(p, γ ) 58 Zn reaction in the NiCu cycles is the fifth most important rp-reaction influencing the burst light curves. Langer et al . [2] precisely measured some low-lying energy levels of 58 Zn to deduce the 57 Cu(p, γ ) 58 Zn reaction rate. Nevertheless, the order of the 1 + 1 and 2 + 3 resonance states that dominate at 0:2 ≲ T (GK) ≲ 0:8 is not confirmed. The 1 + 2 resonance state, which dominates at the XRB sensitive temperature regime 0:8 ≲ T (GK) ≲ 2 was not detected. Using isobaric-multipletmass equation (IMME), we estimate the order of the 1 + 1 and 2 + 3 resonance states and estimate the lower limit of the 1 + 2 resonance energy. We then determine the 57 Cu(p, γ ) 58 Zn reaction rate using the full pf -model space shell model calculations. The new rate is up to a factor of four lower than the Forstner et al . [3] rate recommended by JINA REACLIBv2.2. Using the present 57 Cu(p, γ ) 58 Zn, the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, and 1D implicit hydrodynamic K epler code, we model the thermonuclear XRBs of the clocked burster GS 1826–24. We find that the new rates regulate the reaction flow in the NiCu cycles and strongly influence the burst-ash composition. The 59 Cu(p, γ ) 56 Ni and 59 Cu(p, α ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction. They strongly diminish the impact of the nuclear reaction flow that bypasses the 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on burst light curve. 
    more » « less
  2. Abstract We reassess the 65 As(p, γ ) 66 Se reaction rates based on a set of proton thresholds of 66 Se, S p ( 66 Se), estimated from the experimental mirror nuclear masses, theoretical mirror displacement energies, and full p f -model space shell-model calculation. The self-consistent relativistic Hartree–Bogoliubov theory is employed to obtain the mirror displacement energies with much reduced uncertainty, and thus reducing the proton-threshold uncertainty up to 161 keV compared to the AME2020 evaluation. Using the simulation instantiated by the one-dimensional multi-zone hydrodynamic code, K epler , which closely reproduces the observed GS 1826−24 clocked bursts, the present forward and reverse 65 As(p, γ ) 66 Se reaction rates based on a selected S p ( 66 Se) = 2.469 ± 0.054 MeV, and the latest 22 Mg( α ,p) 25 Al, 56 Ni(p, γ ) 57 Cu, 57 Cu(p, γ ) 58 Zn, 55 Ni(p, γ ) 56 Cu, and 64 Ge(p, γ ) 65 As reaction rates, we find that though the GeAs cycles are weakly established in the rapid-proton capture process path, the 65 As(p, γ ) 66 Se reaction still strongly characterizes the burst tail end due to the two-proton sequential capture on 64 Ge, not found by the Cyburt et al. sensitivity study. The 65 As(p, γ ) 66 Se reaction influences the abundances of nuclei A = 64, 68, 72, 76, and 80 up to a factor of 1.4. The new S p ( 66 Se) and the inclusion of the updated 22 Mg( α ,p) 25 Al reaction rate increases the production of 12 C up to a factor of 4.5, which is not observable and could be the main fuel for a superburst. The enhancement of the 12 C mass fraction alleviates the discrepancy in explaining the origin of the superburst. The waiting point status of and two-proton sequential capture on 64 Ge, the weak-cycle feature of GeAs at a region heavier than 64 Ge, and the impact of other possible S p ( 66 Se) are also discussed. 
    more » « less
  3. Abstract Type I X-ray bursts are rapidly brightening phenomena triggered by thermonuclear burning on the accreting layers of a neutron star (NS). The light curves represent the physical properties of NSs and the nuclear reactions on the proton-rich nuclei. The numerical treatments of the accreting NS and physics of the NS interior are not established, which shows uncertainty in modeling for observed X-ray light curves. In this study, we investigate theoretical X-ray burst models compared with burst light curves with GS 1826-24 observations. We focus on the impacts of the NS mass and radius and base heating on the NS surface using the MESA code. We find a monotonic correlation between the NS mass and the parameters of the light curve. The higher the mass, the longer the recurrence time and the greater the peak luminosity. While the larger the radius, the longer the recurrence time, the peak luminosity remains nearly constant. In the case of increasing base heating, both the recurrence time and peak luminosity decrease. We also examine the above results with a different numerical code, HERES , based on general relativity and consider the central NS. We find that the burst rate, energy, and strength are almost the same in two X-ray burst codes by adjusting the base heat parameter in MESA (the relative errors ≲5%), while the duration and rise times are significantly different between (the relative error is possibly ∼50%). The peak luminosity and the e-folding time change irregularly between two codes for different accretion rates. 
    more » « less
  4. Abstract During the X-ray bursts of GS 1826−24, a “clocked burster”, the nuclear reaction flow that surges through the rapid-proton capture process path has to pass through the NiCu cycles before reaching the ZnGa cycles that moderate further hydrogen burning in the region above the germanium and selenium isotopes. The 57 Cu(p, γ ) 58 Zn reaction that occurs in the NiCu cycles plays an important role in influencing the burst light curves found by Cyburt et al. We deduce the 57 Cu(p, γ ) 58 Zn reaction rate based on the experimentally determined important nuclear structure information, isobaric-multiplet-mass equation, and large-scale shell-model calculations. Based on the isobaric-multiplet-mass equation, we propose a possible order of 1 1 + - and 2 3 + -dominant resonance states and constrain the resonance energy of the 1 2 + state. The latter reduces the contribution of the 1 2 + -dominant resonance state. The new reaction rate is up to a factor of 4 lower than the Forstner et al. rate recommended by JINA REACLIB v2.2 at the temperature regime sensitive to clocked bursts of GS 1826−24. Using the simulation from the one-dimensional implicit hydrodynamic code K epler to model the thermonuclear X-ray bursts of the GS 1826−24 clocked burster, we find that the new 57 Cu(p, γ ) 58 Zn reaction rate, coupled with the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, redistributes the reaction flow in the NiCu cycles and strongly influences the burst ash composition, whereas the 59 Cu(p, α ) 56 Ni and 59 Cu(p, γ ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction and diminish the impact of nuclear reaction flow that bypasses the important 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on the burst light curve. 
    more » « less
  5. We describe the first observations of the same celestial object with gravitational waves and light. ▪  GW170817 was the first detection of a neutron star merger with gravitational waves. ▪  The detection of a spatially coincident weak burst of gamma-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. ▪  A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of ∼0.05 M ⊙ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. ▪  Radio and X-ray observations revealed a long-rising source that peaked ∼160,d after the merger. Combined with the apparent superluminal motion of the associated very long baseline interferometry source, these observations show that the merger produced a relativistic structured jet whose core was oriented ≈20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from interaction between the jet and the merger ejecta. ▪  The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the Universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis of future work. 
    more » « less