skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles
Abstract Predicting dissolved oxygen (DO) in lakes is important for assessing environmental conditions as well as reducing water treatment costs. High levels of DO often precede toxic algal blooms, and low DO causes carcinogenic metals to precipitate during water treatment. Typically, DO is predicted from limited data sets using hydrodynamic modeling or data‐driven approaches like neural networks. However, functional data analysis (FDA) is also an appropriate modeling paradigm for measurements of DO taken vertically through the water column. In this analysis, we build FDA models for a set of profiles measured every 2 hours and forecast the entire DO percent saturation profile from 2 to 24 hours ahead. Functional smoothing and functional principal component analysis are applied first, followed by a vector autoregressive model to forecast the empirical functional principal component (FPC) scores. Rolling training windows adapt to seasonality, and multiple combinations of window sizes, model variables, and parameter specifications are compared using both functional and direct root mean squared error metrics. The FPC method outperforms a suite of comparison models, and including functional pH, temperature, and conductivity variables improves the longer forecasts. Finally, the FDA approach is useful for identifying unusual observations.  more » « less
Award ID(s):
1924146
PAR ID:
10464387
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmetrics
Volume:
34
Issue:
4
ISSN:
1180-4009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability. 
    more » « less
  2. null (Ed.)
    Complex analyses involving multiple, dependent random quantities often lead to graphical models—a set of nodes denoting variables of interest, and corresponding edges denoting statistical interactions between nodes. To develop statistical analyses for graphical data, especially towards generative modeling, one needs mathematical representations and metrics for matching and comparing graphs, and subsequent tools, such as geodesics, means, and covariances. This paper utilizes a quotient structure to develop efficient algorithms for computing these quantities, leading to useful statistical tools, including principal component analysis, statistical testing, and modeling. We demonstrate the efficacy of this framework using datasets taken from several problem areas, including letters, biochemical structures, and social networks. 
    more » « less
  3. null (Ed.)
    The use of hydro-meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro-meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast-informed decision-making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium-range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space-time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis. 
    more » « less
  4. Soft and continuously controllable grippers can be assembled from fluidic prestressed composite (FPC) actuators. Due to their highly deformable features, it is difficult to model such actuators for large deflections. This article proposes a new method for modeling large deflections of FPC actuators called the chained composite model (CCM) to characterize the quasi-static response to an applied fluid pressure and load. The CCM divides an FPC actuator into discrete elements and models each element by a small rotation model. The strain energy of each element and the work done by pressure and loads are computed using third-order displacement polynomials with unknown coefficients; then, the total energy is minimized to calculate stable shapes using the Rayleigh–Ritz method. This study provides a set of systematic design rules to help the robotics community create FPC actuators by understanding how their responses vary as a function of input forces and pressures for a number of modeling and design parameters. Composite actuators are fabricated and a soft gripper is developed to demonstrate the grasping ability of the FPCactuators. Pneumatic pressure and end loads are applied to the composite actuators, and their responses are measured. The modeled responses of the actuators are shown to be in agreement with the measured responses. 
    more » « less
  5. Abstract Post-treatment variables often complicate causal inference. They appear in many scientific problems, including non-compliance, truncation by death, mediation, and surrogate endpoint evaluation. Principal stratification is a strategy to address these challenges by adjusting for the potential values of the post-treatment variables, defined as the principal strata. It allows for characterizing treatment effect heterogeneity across principal strata and unveiling the mechanism of the treatment’s impact on the outcome related to post-treatment variables. However, the existing literature has primarily focused on binary post-treatment variables, leaving the case with continuous post-treatment variables largely unexplored. This gap persists due to the complexity of infinitely many principal strata, which present challenges to both the identification and estimation of causal effects. We fill this gap by providing nonparametric identification and semiparametric estimation theory for principal stratification with continuous post-treatment variables. We propose to use working models to approximate the underlying causal effect surfaces and derive the efficient influence functions of the corresponding model parameters. Based on the theory, we construct doubly robust estimators and implement them in the R package continuousPCE. 
    more » « less