skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic network simulation using DeepRMSA in Elastic Optical Networks
In optical networks, simulation is a cost-efficient and powerful way for network planning and design. It helps researchers and network designers quickly obtain preliminary results on their network performance and easily adjust the design. Unfortunately, most optical simulators are not open-source and there is currently a lack of optical network simulation tools that leverage machine learning techniques for network simulation. Compared to Wavelength Division Multiplexing (WDM) networks, Elastic Optical Networks (EON) use finer channel spacing, a more flexible way of using spectrum resources, thus increasing the network spectrum efficiency. Network resource allocation is a popular research topic in optical networks. In EON, this problem is classified as Routing, Modulation and Spectrum Allocation (RMSA) problem, which aims to allocate sufficient network resources by selecting the optimal modulation format to satisfy a call request. SimEON is an open-source simulation tool exclusively for EON, capable of simulating different EON setup configurations, designing RMSA and regenerator placement/assignment algorithms. It could also be extended with proper modelings to simulate CapEx, OpEx and energy consumption for the network. Deep learning (DL) is a subset of Machine Learning, which employs neural networks, large volumes of data and various algorithms to train a model to solve complex problems. In this paper, we extended the capabilities of SimEON by integrating the DeepRMSA algorithm into the existing simulator. We compared the performance of conventional RMSA and DeepRMSA algorithms and provided a convenient way for users to compare different algorithms’ performance and integrate other machine learning algorithms.  more » « less
Award ID(s):
1817105
PAR ID:
10464593
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)
Page Range / eLocation ID:
287 to 292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing demand for flexible and efficient optical networks has led to the development of Software-Defined Elastic Optical Networks (SD-EONs). These networks leverage the programmability of Software-Defined Networking (SDN) and the adaptability of Elastic Optical Networks (EONs) to optimize network performance under dynamic traffic conditions. However, existing simulation tools often fall short in terms of transparency, flexibility, and advanced functionality, limiting their utility in cutting-edge research. In this paper, we present a Flexible Unified Simulator for Intelligent Optical Networking (FUSION), a fully open-source simulator designed to address these limitations and provide a comprehensive platform for SD-EON research. FUSION integrates traditional routing and spectrum assignment algorithms with advanced machine learning and reinforcement learning techniques, including support for the Stable Baselines 3 library. The simulator also offers robust unit testing, a fully functional Graphical User Interface (GUI), and extensive documentation to ensure usability and reliability. Performance evaluations demonstrate the effectiveness of FUSION in modeling complex network scenarios, showcasing its potential as a powerful tool for advancing SD-EON research. 
    more » « less
  2. Service provisioning can be enhanced with spectrally spatially flexible optical networks (SS-FONs) with multicore fibers; however, intercore crosstalk (XT) is a dominant impairment that complicates the problem of maintaining the quality of transmission (QoT) and resource allocation. The selection of modulation formats (MFs), due to their unique XT sensitivities, further increases the complexity. The routing, modulation, core, and spectrum assignment (RMCSA) problem must select the resources carefully to exploit the available capacity while meeting the desired QoT. In this paper, we propose an RMCSA algorithm called the tridental resource assignment (TRA) algorithm for transparent SS-FONs, and its variant, translucency-aware TRA (TaTRA), for translucent SS-FONs. TRA balances three different factors that affect network performance under dynamic resource allocation. We consider translucent networks with flexible regeneration and with and without modulation and spectrum conversion. Our resource assignment approach includes both an offline network planning component to calculate path priorities and an online/dynamic provisioning component to allocate resources. Extensive simulation experiments performed in realistic network scenarios indicate that TRA and TaTRA significantly reduce the bandwidth blocking probability by several orders of magnitude in some cases. 
    more » « less
  3. Space division multiplexed elastic optical networks (SDM-EONs) enhance service provisioning by offering increased fiber capacity through the use of flexible spectrum allocation, multiple spatial modes, and efficient modulations. In these networks, the problem of allocating resources for connections involves assigning routes, modulations, cores, and spectrum (RMCSA). However, the presence of intercore crosstalk (XT) between ongoing connections on adjacent cores can degrade signal transmission, necessitating proper handling during resource assignment. The use of multiple modulations in translucent optical networks presents a challenge in balancing spectrum utilization and XT accumulation. In this paper, we propose a dual-optimized RMCSA algorithm called the Capacity Loss Aware Resource Assignment Algorithm (CLARA+), which optimizes network capacity utilization to improve resource availability and network performance. A two-step machine-learning-enabled optimization is used to improve the resource allocations by balancing the tradeoff between spectrum utilization and XT accumulation with the help of feature extraction from the network. Extensive simulations demonstrate that CLARA+ significantly reduces bandwidth blocking probability and enhances resource utilization across various scenarios. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. The algorithm effectively balances spectrum utilization and XT accumulation more efficiently compared to existing algorithms in the literature. 
    more » « less
  4. A fine-grained flexible frequency grid for elastic optical transmission and space division multiplexing in conjunction with spectrally efficient modulations is an excellent solution to the coming capacity crunch. In space division multiplexed elastic optical networks (SDM-EONs), the routing, modulation, core, and spectrum assignment (RMCSA) problem is an important lightpath resource assignment problem. Intercore cross talk (XT) reduces the quality of parallel transmissions on separate cores, and the RMCSA algorithm must ensure that XT requirements are satisfied while optimizing network performance. There is an indirect trade-off between spectrum utilization and XT tolerance; while higher modulations are more spectrum efficient, they are also less tolerant of XT since they permit fewer connections on neighboring cores on the overlapping spectra. Numerous XT-aware RMCSA algorithms restrict the number of litcores, cores on which overlapping spectra are occupied, to guarantee XT constraints are met. In this paper, we present a machine learning (ML) aided threshold optimization strategy that enhances the performance ofanyRMCSA algorithm for any network model. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. We also present the RMCSA algorithm called spectrum-wastage-avoidance-based resource allocation (SWARM), which is based on the idea of spectrum wastage due to spectrum requirements and XT constraints. We note that SWARM not only outperforms other RMCSA algorithms, but also its ML-optimized variant outperforms other ML-optimized RMCSA algorithms. 
    more » « less
  5. This paper proposes an evolutionary transfer learning approach (Evol-TL) for scalable quality-of-transmission (QoT) estimation in multi-domain elastic optical networks (MD-EONs). Evol-TL exploits a broker-based MD-EON architecture that enables cooperative learning between the broker plane (end-to-end) and domain-level (local) machine learning functions while securing the autonomy of each domain. We designed a genetic algorithm to optimize the neural network architectures and the sets of weights to be transferred between the source and destination tasks. We evaluated the performance of Evol-TL with three case studies considering the QoT estimation task for lightpaths with (i) different path lengths (in terms of the numbers of fiber links traversed), (ii) different modulation formats, and (iii) different device conditions (emulated by introducing different levels of wavelength-specific attenuation to the amplifiers). The results show that the proposed approach can reduce the average amount of required training data by up to 13 ×<#comment/> while achieving an estimation accuracy above 95%. 
    more » « less