skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly diverse and unknown viruses may enhance Antarctic endoliths’ adaptability
Abstract Background Rock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities. Results We performed metagenomic analyses on rocks from across Antarctica representing a broad range of environmental and spatial conditions, and which resulted in a predicted viral catalog comprising > 75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities which had predicted auxiliary metabolic genes (AMGs) with functions indicating that they may be potentially influencing bacterial adaptation and biogeochemistry. Conclusion This catalog lays the foundation for expanding knowledge of virosphere diversity, function, spatial ecology, and dynamics in extreme environments. This work serves as a step towards exploring adaptability of microbial communities in the face of a changing climate.  more » « less
Award ID(s):
2215705
PAR ID:
10464602
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Microbiome
Volume:
11
Issue:
1
ISSN:
2049-2618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundSeagrasses are globally distributed marine flowering plants that play foundational roles in coastal environments as ecosystem engineers. While research efforts have explored various aspects of seagrass-associated microbial communities, including describing the diversity of bacteria, fungi and microbial eukaryotes, little is known about viral diversity in these communities. ResultsTo begin to address this, we leveraged metagenomic sequencing data to generate a catalog of bacterial metagenome-assembled genomes (MAGs) and phage genomes from the leaves of the seagrass,Zostera marina. We expanded the robustness of this viral catalog by incorporating publicly available metagenomic data from seagrass ecosystems. The final MAG set represents 85 high-quality draft and 62 medium-quality draft bacterial genomes. While the viral catalog represents 354 medium-quality, high-quality, and complete viral genomes. Predicted auxiliary metabolic genes in the final viral catalog had putative annotations largely related to carbon utilization, suggesting a possible role for phage in carbon cycling in seagrass ecosystems. ConclusionsThese genomic resources provide initial insight into bacterial-viral interactions in seagrass meadows and are a foundation on which to further explore these critical interkingdom interactions. These catalogs highlight a possible role for viruses in carbon cycling in seagrass beds which may have important implications for blue carbon management and climate change mitigation. 
    more » « less
  2. Abstract Viruses are ubiquitous in deep-sea hydrothermal vents, where they influence microbial communities and biogeochemistry. Yet, viral ecology and evolution remain understudied in these environments. Here, we identify 49,962 viruses from 52 globally distributed hydrothermal vent samples (10 plume, 40 deposit, and 2 diffuse flow metagenomes), and reconstruct 5708 viral metagenome-assembled genomes, the majority of which were bacteriophages. Hydrothermal viruses were largely endemic, however, some viruses were shared between geographically separated vents, predominantly between the Lau Basin and Brothers Volcano in the Pacific Ocean. Geographically distant viruses shared proteins related to core functions such as structural proteins, and rarely, proteins of auxiliary functions involved in processes such as fermentation and cobalamin biosynthesis. Common microbial hosts of viruses included members of Campylobacterota, Alpha-, and Gammaproteobacteria in deposits, and Gammaproteobacteria in plumes. Campylobacterota- and Gammaproteobacteria-infecting viruses reflected variations in hydrothermal chemistry and functional redundancy in their predicted microbial hosts, suggesting that hydrothermal geology is a driver of viral ecology and coevolution of viruses and hosts. Our results indicate that viral ecology and evolution in globally distributed hydrothermal vents is shaped by endemism and thus may have increased susceptibility to the negative impacts of deep-sea mining and anthropogenic change in ocean ecosystems. 
    more » « less
  3. Abstract Phagotrophic protists (formerly protozoa) are a highly diverse, polyphyletic grouping of generally unicellular, heterotrophic eukaryotes that are key regulators of the soil microbiome. The biodiversity and ecology of soil phagotrophic protists are still largely uncharacterized, especially in the Antarctic, which possesses some of the harshest terrestrial environments known and potentially many physiologically unique and scientifically interesting species. Antarctic soil systems are also highly limited in terms of moisture, temperature, and carbon, and the resulting reduced biological complexity can facilitate fine-tuned investigation of the drivers and functioning of microbial communities. To facilitate and encourage future research into protist biodiversity and ecology, especially in context of the broader functioning of Antarctic terrestrial communities, I review the biodiversity, distribution, and ecology of Antarctic soil phagotrophic protists. Biodiversity appears to be highly structured by region and taxonomic group, with the Antarctic Peninsula having the highest taxonomic diversity and ciliates (Ciliophora) being the most diverse taxonomic group. However, richness estimates are likely skewed by disproportionate sampling (over half of the studies are from the peninsula), habitat type bias (predominately moss-associated soils), investigator bias (toward ciliates and the testate amoeba morphogroup), and methodological approach (toward cultivation and morphological identification). To remedy these biases, a standardized methodology using both morphological and molecular identification and increased emphasis on microflagellate and naked amoeba morphogroups is needed. Additionally, future research should transition away from biodiversity survey studies to dedicated ecological studies that emphasize the function, ecophysiology, endemicity, dispersal, and impact of abiotic drivers beyond moisture and temperature. 
    more » « less
  4. Mackelprang, Rachel (Ed.)
    ABSTRACT The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth. 
    more » « less
  5. Impact statement One fundamental goal in microbial ecology is to predict how microbial diversity is changed across space and time. Although spatial patterns of microbial communities have been recently intensively examined, our understanding of microbial temporal dynamics is rudimentary, primarily due to the lack of appropriate experimental data and theoretical framework. By reconciling niche and neutral perspectives, this study developed a novel process model‐based framework to effectively encapsulate microbial species temporal dynamics, which is powerful for quantitatively assessing the assembly mechanisms underlying microbial community dynamics. This study represents a significant advance in explaining microbial temporal dynamics toward predictive microbial community ecology. 
    more » « less