skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theory and Practice of Relational-to-RDF Temporal Data Exchange and Query Answering
We consider the problem of answering temporal queries on RDF stores, in presence of atemporal RDFS domain ontologies, of relational data sources that include temporal information, and of rules that map the domain information in the source schemas into the target ontology. Our proposed practice-oriented solution consists of two rule-based domain-independent algorithms. The first algorithm materializes target RDF data via a version of data exchange that enriches both the data and the ontology with temporal information from the relational sources. The second algorithm accepts as inputs temporal queries expressed in terms of the domain ontology using a lightweight temporal extension of SPARQL, and ensures successful evaluation of the queries on the materialized temporally-enriched RDF data. To study the quality of the information generated by the algorithms, we develop a general framework that formalizes the relational-to-RDF temporal data-exchange problem. The framework includes a chase formalism and a formal solution for the problem of answering temporal queries in the context of relational-to-RDF temporal data exchange. In this article, we present the algorithms and the formal framework that proves correctness of the information output by the algorithms, and also report on the algorithm implementation and experimental results for two application domains.  more » « less
Award ID(s):
1814152
PAR ID:
10464624
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Data and Information Quality
Volume:
15
Issue:
2
ISSN:
1936-1955
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface. 
    more » « less
  2. We consider the problem of answering queries about formulas of first-order logic based on background knowledge partially represented explicitly as other formulas, and partially represented as examples independently drawn from a fixed probability distribution. PAC semantics, introduced by Valiant, is one rigorous, general proposal for learning to reason in formal languages: although weaker than classical entailment, it allows for a powerful model theoretic framework for answering queries while requiring minimal assumptions about the form of the distribution in question. To date, however, the most significant limitation of that approach, and more generally most machine learning approaches with robustness guarantees, is that the logical language is ultimately essentially propositional, with finitely many atoms. Indeed, the theoretical findings on the learning of relational theories in such generality have been resoundingly negative. This is despite the fact that first-order logic is widely argued to be most appropriate for representing human knowledge. In this work, we present a new theoretical approach to robustly learning to reason in first-order logic, and consider universally quantified clauses over a countably infinite domain. Our results exploit symmetries exhibited by constants in the language, and generalize the notion of implicit learnability to show how queries can be computed against (implicitly) learned first-order background knowledge. 
    more » « less
  3. Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. 
    more » « less
  4. In the problem of domain generalization (DG), there are labeled training data sets from several related prediction problems, and the goal is to make accurate predictions on future unlabeled data sets that are not known to the learner. This problem arises in several applications where data distributions fluctuate because of environmental, technical, or other sources of variation. We introduce a formal framework for DG, and argue that it can be viewed as a kind of supervised learning problem by augmenting the original feature space with the marginal distribution of feature vectors. While our framework has several connections to conventional analysis of supervised learning algorithms, several unique aspects of DG require new methods of analysis. This work lays the learning theoretic foundations of domain generalization, building on our earlier conference paper where the problem of DG was introduced (Blanchard et al., 2011). We present two formal models of data generation, corresponding notions of risk, and distribution-free generalization error analysis. By focusing our attention on kernel methods, we also provide more quantitative results and a universally consistent algorithm. An efficient implementation is provided for this algorithm, which is experimentally compared to a pooling strategy on one synthetic and three real-world data sets. 
    more » « less
  5. null (Ed.)
    In the problem of domain generalization (DG), there are labeled training data sets from several related prediction problems, and the goal is to make accurate predictions on future unlabeled data sets that are not known to the learner. This problem arises in several applications where data distributions fluctuate because of environmental, technical, or other sources of variation. We introduce a formal framework for DG, and argue that it can be viewed as a kind of supervised learning problem by augmenting the original feature space with the marginal distribution of feature vectors. While our framework has several connections to conventional analysis of supervised learning algorithms, several unique aspects of DG require new methods of analysis. This work lays the learning theoretic foundations of domain generalization, building on our earlier conference paper where the problem of DG was introduced (Blanchard et al., 2011). We present two formal models of data generation, corresponding notions of risk, and distribution-free generalization error analysis. By focusing our attention on kernel methods, we also provide more quantitative results and a universally consistent algorithm. An efficient implementation is provided for this algorithm, which is experimentally compared to a pooling strategy on one synthetic and three real-world data sets. Keywords: domain generalization, generalization error bounds, Rademacher complexity, kernel methods, universal consistency, kernel approximation 
    more » « less