Abstract With mounting scientific evidence demonstrating adverse global climate change (GCC) impacts to water quality, water quality policies, such as the Total Maximum Daily Loads (TMDLs) under the U.S. Clean Water Act, have begun accounting for GCC effects in setting nutrient load‐reduction policy targets. These targets generally require nutrient reductions for attaining prescribed water quality standards (WQS) by setting safe levels of nutrient concentrations that curtail potentially harmful cyanobacteria blooms (CyanoHABs). While some governments require WQS to consider climate change, few tools are available to model the complex interactions between climate change and benthic legacy nutrients. We present a novel process‐based integrated assessment model (IAM) that examines the extent to which synergistic relationships between GCC and legacy Phosphorus release could compromise the ability of water quality policies to attain established WQS. The IAM is calibrated for simulating the eutrophic Missisquoi Bay and watershed in Lake Champlain (2001–2050). Water quality impacts of seven P‐reduction scenarios, including the 64.3% reduction specified under the current TMDL, were examined under 17 GCC scenarios. The TMDL WQS of 0.025 mg/L total phosphorus is unlikely to be met by 2035 under the mandated 64.3% reduction for all GCC scenarios. IAM simulations show that the frequency and severity of summer CyanoHABs increased or minimally decreased under most climate and nutrient reduction scenarios. By harnessing IAMs that couple complex process‐based simulation models, the management of water quality in freshwater lakes can become more adaptive through explicit accounting of GCC effects on both the external and internal sources of nutrients.
more »
« less
Validity and Validation of Computer Simulations—A Methodological Inquiry with Application to Integrated Assessment Models
Our purpose is to advance a reasoned perspective on the scientific validity of computer simulation, using an example—integrated assessment modeling of climate change and its projected impacts—that is itself of great and urgent interest to policy in the real world. The spirited and continuing debate on the scientific status of integrated assessment models (IAMs) of global climate change has been conducted mostly among climate change modelers and users seeking guidance for climate policy. However, it raises a number and variety of issues that have been addressed, with various degrees of success, in other literature. The literature on methodology of simulation was mostly skeptical at the outset but has become more nuanced, casting light on some key issues relating to the validity and evidentiary standing of climate change IAMs (CC-IAMs). We argue that the goal of validation is credence, i.e., confidence or justified belief in model projections, and that validation is a matter of degree: (perfect) validity is best viewed as aspirational and, other things equal, it makes sense to seek more rather than less validation. We offer several conclusions. The literature on computer simulation has become less skeptical and more inclined to recognize that simulations are capable of providing evidence, albeit a different kind of evidence than, say, observation and experiments. CC-IAMs model an enormously complex system of systems and must respond to several challenges that include building more transparent models and addressing deep uncertainty credibly. Drawing on the contributions of philosophers of science and introspective practitioners, we offer guidance for enhancing the credibility of CC-IAMs and computer simulation more generally.
more »
« less
- Award ID(s):
- 1739909
- PAR ID:
- 10464658
- Date Published:
- Journal Name:
- Knowledge
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2673-9585
- Page Range / eLocation ID:
- 262 to 276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The scientific and policy needs to assess and manage climate change impacts have spawned new coupled, multi-scale integrated assessment model (IAM) frameworks that link global climate and economic processes with high-resolution data and models of human-environmental systems at local and meso scales (Fisher-Vanden and Weyant 2020Annu. Rev. Resour. Econ.12471–87). A central challenge is in accounting for the fundamental interdependence of people, firms, and economic activities across space at multiple scales. This requires modeling approaches that can incorporate the relevant spatial details at each scale while also ensure consistency with spatially varying feedbacks and interactions across scales—a condition economists refer to as spatial equilibrium. In this paper, we provide an overview of how economists think about and model spatial interactions, particularly those at the local level. We describe challenges and recent progress in accounting for greater spatial heterogeneity at individual (field, agent) scales and incorporating heterogeneous spatial interactions and dynamics into consistent IAM frameworks. We conclude that the most notable progress is in advancing global IAMs with spatial heterogeneity and dynamics embedded in spatial equilibrium frameworks and that less progress has been made in incorporating features of spatial equilibrium into highly detailed multi-scale IAMs.more » « less
-
Global policy goals for halting biodiversity loss and climate change depend on each other to be successful. Marine biodiversity and climate change are intertwined through foodwebs that cycle and transport carbon and contribute to carbon sequestration. Yet, biodiversity conservation and fisheries management seldom explicitly include ocean carbon transport and sequestration. In order to effectively manage and govern human activities that affect carbon cycling and sequestration, international biodiversity and climate agreements need to address both biodiversity and climate issues. International agreements that address issues for climate and biodiversity are best poised to facilitate the protection of ocean carbon with existing policies. The degree to which the main international biodiversity and climate agreements make reference to multiple issues has however not been documented. Here, we used a text mining analysis of over 2,700 binding and non-binding policy documents from ten global ocean-related agreements to identify keywords related to biodiversity, climate, and ocean carbon. While climate references were mostly siloed within climate agreements, biodiversity references were included in most agreements. Further, we found that six percent of policy documents (n=166) included ocean carbon keywords. In light of our results, we highlight opportunities to strengthen the protection of ocean carbon in upcoming negotiations of international agreements, and via area-based management, environmental impact assessment and strategic environmental assessment.more » « less
-
Abstract Anthropogenic climate change threatens the structure and function of ecosystems throughout the globe, but many people are still skeptical of its existence. Traditional “knowledge deficit model” thinking has suggested that providing the public with more facts about climate change will assuage skepticism. However, presenting evidence contrary to prior beliefs can have the opposite effect and result in a strengthening of previously held beliefs, a phenomenon known as biased assimilation or a backfire effect. Given this, strategies for effectively communicating about socioscientific issues that are politically controversial need to be thoroughly investigated. We randomly assigned 184 undergraduates from an environmental science class to one of three experimental conditions in which we exposed them to short videos that employed different messaging strategies: (a) an engaging science lecture, (b) consensus messaging, and (c) elite cues. We measured changes in student perceptions of climate change across five constructs (content knowledge, acceptance of scientific consensus, perceived risk, support for action, and climate identity) before and after viewing videos. Consensus messaging outperformed the other two conditions in increasing student acceptance of the scientific consensus, perceived risk of climate change, and climate identity, suggesting this may be an effective strategy for communicating the gravity of anthropogenic climate change. Elite cues outperformed the engaging science lecture condition in increasing student support for action on climate, with politically conservative students driving this relationship, suggesting that the messenger is more important than the message if changing opinions about the necessity of action on climate change is the desired outcome. Relative to the other conditions, the engaging science lecture did not support change in students' perceptions on climate, but appealing to student respect for authority produced positive results. Notably, we observed no decline in students' acceptance of climate science, indicating that none of the conditions induced a backfire effect.more » « less
-
The United Nation’s Sustainable Development Goals state climate change could irreversibly affect future generations and is one of the most urgent issues facing society. To date, most education research on climate change examines middle and high school students’ knowledge without considering the link between understanding and interest to address such issues in their career. In research on students’ attitudes about sustainability, we found that half of first-year college engineering students, in our nationally representative sample of all college students at 4-year institutions (n = 937), do not believe climate change is caused by humans. This lack of belief in human-caused climate change is a significant problem in engineering education because our results also indicate engineering students who do not believe in human caused climate change are less likely to want to address climate change in their careers. This dismal finding highlights a need for improving student understanding and attitudes toward climate change in order to produce engineers prepared and interested in solving complex global problems in sustainability. To advance understanding about students’ understanding of climate change and their agency to address the issue, we developed the CLIMATE survey to measure senior undergraduate engineering students’ Climate change literacy, engineering identity, career motivations, and agency through engineering. The survey was designed for students in their final senior design, or capstone course, just prior to entering the workforce. We developed the survey using prior national surveys and newly written questions categorized into six sections: (1) career goals and motivation, (2) college experiences, (3) agency, (4) climate literacy, (5) people and the planet, and (6) demographic information. We conducted focus groups with students to establish face and content validity of the survey. We collected pilot data with 200 engineering students in upper-level engineering courses to provide validity evidence for the use of these survey items to measure students and track changes across the undergraduate curriculum for our future work. In this paper, we narrate the development of the survey supported by literature and outline the next step for further validation and distribution on a national scale. Our intent is to receive feedback and input about the questions being asked and the CLIMATE instrument. Our objective is to share the nationally representative non-identifiable responses (the estimated goal is 4,000 responses) openly with education researchers interested in students understanding about climate change, their engineering identity, career motivations, and agency through engineering. Ultimately, we want this research to become a catalyst for teaching about topics related to climate change in engineering and its implications for sustainability.more » « less
An official website of the United States government

