skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating communication with multi‐HCA aware collectives in MPI
Summary To accelerate the communication between nodes, supercomputers are now equipped with multiple network adapters per node, also referred to as HCAs (Host Channel Adapters), resulting in a “multi‐rail”/“multi‐HCA” network. For example, the ThetaGPU system at Argonne National Laboratory (ANL) has eight adapters per node; with this many networking resources available, utilizing all of them becomes non‐trivial. The Message Passing Interface (MPI) is a dominant model for high‐performance computing clusters. Not all MPI collectives utilize all resources, and this becomes more apparent with advances in bandwidth and adapter count in a given cluster. In this work, we provide a thorough performance analysis of existing multirail solutions and their implications on collectives and present the necessity for further enhancement. Specifically, we propose novel designs for hierarchical, multi‐HCA‐aware Allgather. The proposed designs fully utilize all the available network adapters within a node and provide high overlap between inter‐node and intra‐node communication. At the micro‐benchmark level, we see large inter‐node improvements up to 62% and 61% better than HPC‐X and MVAPICH2‐X for 1024 processes. Because Allgather is used in Ring‐Allreduce, our designs also improve its performance by 56% and 44% compared to HPC‐X and MVAPICH2‐X, respectively. At the application level, our enhanced Allgather shows and improvement in a matrix‐vector multiplication kernel when compared to HPC‐X and MVAPICH2‐X, and Allreduce performs up to 7.83% better in deep learning training against MVAPICH2‐X.  more » « less
Award ID(s):
2018627
PAR ID:
10464671
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Concurrency and Computation: Practice and Experience
ISSN:
1532-0626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In high-performance computing (HPC), modern supercomputers typically provide exclusive computing resources to user applications. Nevertheless, the interconnect network is a shared resource for both inter-node communication and across-node I/O access, among co-running workloads, leading to inevitable network interference. In this study, we develop MFNetSim, a multi-fidelity modeling framework that enables simulation of multi-traffic simultaneously over the interconnect network, including inter-process communication and I/O traffic. By combining different levels of abstraction, MFNetSim can efficiently co-model the communication and I/O traffic occurring on HPC systems equipped with flash-based storage. We conduct simulation studies of hybrid workloads composed of traditional HPC applications and emerging ML applications on a 1,056-node Dragonfly system with various configurations. Our analysis provides various observations regarding how network interference affects communication and I/O traffic. 
    more » « less
  2. The increase in scale and heterogeneity of high-performance computing (HPC) systems predispose the performance of Message Passing Interface (MPI) collective communications to be susceptible to noise, and to adapt to a complex mix of hardware capabilities. The designs of state of the art MPI collectives heavily rely on synchronizations; these designs magnify noise across the participating processes, resulting in significant performance slowdown. Therefore, such design philosophy must be reconsidered to efficiently and robustly run on the large-scale heterogeneous platforms. In this paper, we present ADAPT, a new collective communication framework in Open MPI, using event-driven techniques to morph collective algorithms to heterogeneous environments. The core concept of ADAPT is to relax synchronizations, while mamtaining the minimal data dependencies of MPI collectives. To fully exploit the different bandwidths of data movement lanes in heterogeneous systems, we extend the ADAPT collective framework with a topology-aware communication tree. This removes the boundaries of different hardware topologies while maximizing the speed of data movements. We evaluate our framework with two popular collective operations: broadcast and reduce on both CPU and GPU clusters. Our results demonstrate drastic performance improvements and a strong resistance against noise compared to other state of the art MPI libraries. In particular, we demonstrate at least 1.3X and 1.5X speedup for CPU data and 2X and 10X speedup for GPU data using ADAPT event-based broadcast and reduce operations. 
    more » « less
  3. Machine learning models are increasingly being trained across multiple GPUs and servers. In this setting, data is transferred between GPUs using communication collectives such as ALLTOALL and ALLREDUCE, which can become a significant bottleneck in training large models. Thus, it is important to use efficient algorithms for collective communication. We develop TACCL, a tool that enables algorithm designers to guide a synthesizer into automatically generating algorithms for a given hardware configuration and communication collective. TACCL uses a novel communication sketch abstraction to get crucial information from the designer to significantly reduce the search space and guide the synthesizer towards better algorithms. TACCL also uses a novel encoding of the problem that allows it to scale beyond single-node topologies. We use TACCL to synthesize algorithms for three collectives and two hardware topologies: DGX-2 and NDv2. We demonstrate that the algorithms synthesized by TACCL outperform the Nvidia Collective Communication Library (NCCL) by up to 6.7x. We also show that TACCL can speed up end-to-end training of Transformer-XL and BERT models by 11%–2.3x for different batch sizes. 
    more » « less
  4. In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO, a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms. Performance evaluation is done on Lustre and GPFS filesystems. MPI-Vector-IO scales well with MPI processes and file size and achieves bandwidth up to 22 GB/s for common spatial data access patterns. We observed that independent file read functions performed better than collective functions in MPI-IO for contiguous access pattern on Lustre. In general, the I/O is improved by one to two orders of magnitude over real-world datasets using up to 1152 CPU cores. Spatial Join query is used as an exemplar to demonstrate an end-to-end application using MPI-Vector-IO. 
    more » « less
  5. In this paper, we consider a remote inference system, where a neural network is used to infer a time-varying target (e.g., robot movement), based on features (e.g., video clips) that are progressively received from a sensing node (e.g., a camera). Each feature is a temporal sequence of sensory data. The inference error is determined by (i) the timeliness and (ii) the sequence length of the feature, where we use Age of Information (AoI) as a metric for timeliness. While a longer feature can typically provide better inference performance, it often requires more channel resources for sending the feature. To minimize the time-averaged inference error, we study a learning and communication co-design problem that jointly optimizes feature length selection and transmission scheduling. When there is a single sensor-predictor pair and a single channel, we develop low-complexity optimal co-designs for both the cases of time-invariant and time-variant feature length. When there are multiple sensor-predictor pairs and multiple channels, the co-design problem becomes a restless multi-arm multi-action bandit problem that is PSPACE-hard. For this setting, we design a low-complexity algorithm to solve the problem. Trace-driven evaluations demonstrate the potential of these co-designs to reduce inference error by up to 10000 times. 
    more » « less