skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HX and Me: Understanding Allostery, Folding, and Protein Machines
My accidental encounter with protein hydrogen exchange (HX) at its very beginning and its continued development through my scientific career have led us to a series of advances in HX measurement, interpretation, and cutting edge biophysical applications. After some thoughts about how life brought me there, I take the opportunity to reflect on our early studies of allosteric structure and energy change in hemoglobin, the still-current protein folding problem, and our most recent forward-looking studies on protein machines.  more » « less
Award ID(s):
1929671
PAR ID:
10464705
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Review of Biophysics
Volume:
52
Issue:
1
ISSN:
1936-122X
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM. At a global level, HX MS confirms the one noncanonical interprotomer interface in the Hsp104 hexamer as a marker for the spiraled conformation revealed by cryo-EM and measures its fast conformational cycling under ATP hydrolysis. Other findings enable reinterpretation of the apparent variability of the regulatory middle domain. With respect to detailed mechanism, HX MS determines the response of each Hsp104 structural element to the different bound adenosine nucleotides (ADP, ATP, AMPPNP, and ATPγS). They are distinguished most sensitively by the two Walker A nucleotide-binding segments. Binding of the ATP analog, ATPγS, tightly restructures the Walker A segments and drives the global open-to-closed/extended transition. The global transition carries part of the ATP/ATPγS-binding energy to the somewhat distant central pore. The pore constricts and the tyrosine and other pore-related loops become more tightly structured, which seems to reflect the energy-requiring directional pull that translocates the substrate protein. ATP hydrolysis to ADP allows Hsp104 to relax back to its lowest energy open state ready to restart the cycle. 
    more » « less
  2. Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution. 
    more » « less
  3. Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution. 
    more » « less
  4. Abstract A thermosyphon-based modular cooling approach offers an energy efficient cooling solution with an increased potential for waste heat recovery. Central to the cooling system is an air-refrigerant finned tube heat exchanger (HX), where air is cooled by evaporating refrigerant. This work builds on a previously published two-dimensional (2D) model for the finned-tube HX by updating and validating the model using in-house experimental data collected from the proposed system using R1233zd(E) as the working fluid. The results show that key system variables such as refrigerant outlet quality, air and refrigerant outlet temperatures, and exchanger duty agree within 20% of their experimental counterparts. The validated model is then used to predict the mean heat transfer coefficient on the refrigerant side for each tube in the direction of airflow, indicating a maximum heat transfer coefficient of nearly 1200 W/(m2 K) for a HX duty of 5.3 kW among the tested cases. The validated model therefore enables accurate predictions of HX performance and provides insights into improving the heat exchange efficiency and the corresponding system performance. 
    more » « less
  5. An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations. The algorithms have been incorporated into an updated version of the freely available software, HX-Express, and validated using known mixtures of peptides deuterated to varying degrees. This approach presents a readily accessible tool to fit and interpret bimodal and trimodal behavior in HDX-MS data for mixed populations, EX1 kinetics, and pulse labeling data. 
    more » « less