Abstract A systematic investigation of Planacon MCP-PMTs was performed using 64 XP85002/ FIT-Q photosensors. These devices are equipped with microchannel plates of reduced resistance. Results of a study of their gain stability over time and saturation level in terms of the average anode current are presented. This information allows one to determine the lower limit of the MCP resistance for stable Planacon operation. The spread of the electron multiplication characteristics for the entire production batch is also presented, indicating the remarkably low voltage requirements of these MCP-PMTs. Detection efficiency and noise characteristics, such as dark count rate and afterpulsing level, are also reviewed.
more »
« less
A simple approach for characterizing the spatially varying sensitivity of microchannel plate detectors
We present a simple approach to characterize the spatial variation of the gain in microchannel plate (MCP) coupled to phosphor detectors using single electron or photon hits. The technique is easy to implement and general enough to be extended to other kinds of detectors. We demonstrate the efficacy of the approach on both laboratory and Monte Carlo generated datasets. Furthermore, we use the approach to measure the variation in gain over time as the MCP is exposed to an increasing number of electrons.
more »
« less
- Award ID(s):
- 2110376
- PAR ID:
- 10464761
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 93
- Issue:
- 7
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cooperation among telecom carriers and datacenter (DC) providers (DCPs) is essential to ensure resiliency of network-cloud ecosystems. To enable efficient cooperative recovery in case of resource crunch, e.g., due to traffic congestion or network failures, we previously studied several frameworks for cooperative recovery among different stakeholders (e.g., telecom carriers and DCPs). Now, we introduce a novel Multi-entity Cooperation Platform (MCP) for implementing cooperative recovery planning, to achieve efficient use of carriers’ valuable optical-network resources during recovery. We adopt a Distributed Ledger Technology (DLT) that ensures decentralized and tamper-proof information exchange among stakeholders to achieve open and fair cooperation. To support diverse types of cooperation, we develop a state machine representing the MCP operation and define state transitions associated to stakeholders’ cooperation within the state machine. Moreover, we propose a signaling system in MCP to ensure simple and reliable state transitions for stakeholders during the cooperative recovery planning in large ecosystems. We experimentally demonstrate a proof-of-concept DLT-based MCP on a testbed. We showcase a DCP-carrier cooperative planning process, showing the flexibility of the proposed MCP to support diverse types of cooperation.more » « less
-
null (Ed.)Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.more » « less
-
Some arsenite [As(III)]-oxidizing bacteria exhibit positive chemotaxis towards As(III), however, the related As(III) chemoreceptor and regulatory mechanism remain unknown. The As(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 displays positive chemotaxis towards 0.5–2 mM As(III). Genomic analyses revealed a putative chemoreceptor-encoding gene, mcp, located in the arsenic gene island and having a predicted promoter binding site for the As(III) oxidation regulator AioR. Expression of mcp and other chemotaxis related genes (cheA, cheY2 and fliG) was inducible by As(III), but not in the aioR mutant. Using capillary assays and intrinsic tryptophan fluorescence spectra analysis, Mcp was confirmed to be responsible for chemotaxis towards As(III) and to bind As(III) (but not As(V) nor phosphate) as part of the sensing mechanism. A bacterial one-hybrid system technique and electrophoretic mobility shift assays showed that AioR interacts with the mcp regulatory region in vivo and in vitro, and the precise AioR binding site was confirmed using DNase I foot-printing. Taken together, these results indicate that this Mcp is responsible for the chemotactic response towards As(III) and is regulated by AioR. Additionally, disrupting the mcp gene affected bacterial As(III) oxidation and growth, inferring that Mcp may exert some sort of functional connection between As(III) oxidation and As(III) chemotaxis.more » « less
-
Abstract Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to thePorticoccaceaefamily (Candidatus Reddybacter) dominated the microbial community. Using metagenome‐assembled genomes, we reconstructed the central metabolism ofCandidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of thePorticoccaceaefamily and found evidence suggesting the acquisition ofpmoand other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.more » « less
An official website of the United States government

