skip to main content


Title: Single-ended characterization of the coherent transfer matrix of coupled multimode transmission channels

Light propagation in random media is a subject of interest to the optics community at large, with applications ranging from imaging to communication and sensing. However, real-time characterization of wavefront distortion in random media remains a major challenge. Compounding the difficulties, for many applications such as imaging (e.g., endoscopy) and focusing through random media, we only have single-ended access. In this work, we propose to represent wavefronts as superpositions of spatial modes. Within this framework, random media can be represented as a coupled multimode transmission channel. Once the distributed coherent transfer matrix of the channel is characterized, wavefront distortions along the path can be obtained. Fortunately, backreflections almost always accompany mode coupling and wavefront distortions. Therefore, we further propose to utilize backreflections to perform single-ended characterization of the coherent transfer matrix. We first develop the general framework for single-ended characterization of the coherent transfer matrix of coupled multimode transmission channels. Then, we apply this framework to the case of a two-mode channel, a single-mode fiber, which supports two randomly coupled polarization modes, to provide a proof-of-concept demonstration. Furthermore, as one of the main applications of coherent channel estimation, a polarization imaging system through single-mode fibers is implemented. We envision that the proposed method can be applied to both guided and free-space channels with a multitude of applications.

 
more » « less
NSF-PAR ID:
10464806
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Photonics Research
Volume:
11
Issue:
10
ISSN:
2327-9125
Page Range / eLocation ID:
Article No. 1627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic and steady-state aspects of wave propagation are deeply connected in lossless open systems ‎in which the scattering matrix is unitary. There is then an equivalence among the energy excited within ‎the medium through all channels, the Wigner time delay, which is the sum of dwell times in all ‎channels coupled to the medium, and the density of states. But these equivalences fall away in the ‎presence of material loss or gain. In this paper, we use microwave measurements, numerical ‎simulations, and theoretical analysis to discover the changing relationships among fundamental wave ‎properties with loss and gain, and their dependence upon dimensionality and spectral overlap. We ‎begin with the demonstrations that the transmission time in random 1D media is equal to the density ‎of states even in the presence of ultrastrong absorption and that its ensemble average is independent ‎of the strengths of scattering and absorption. In contrast, the Wigner time becomes imaginary in the ‎presence of loss, with real and imaginary parts that fall with absorption. In multichannel media, the ‎transmission time remains equal to the density of states and is independent of the scattering strength ‎in unitary systems but falls with absorption to a degree that increases with the strengths of absorption ‎and scattering, and the number of channels coupled to the medium. We show that the relationships ‎between key propagation variables in non-Hermitian systems can be understood in terms of the ‎singularities of the phase of the determinant of the transmission matrix. The poles of the transmission ‎matrix are the same as those of the scattering matrix, but the transmission zeros are fundamentally ‎different. Whereas the zeros of the scattering matrix are the complex conjugates of the poles, the ‎transmission zeros are topological: in unitary systems they occur only singly on the real axis or as ‎conjugate pairs. We follow the evolution and statistics of zeros in the complex plane as random ‎samples are deformed. The sensitivity of the spacing of zeros in the complex plane with deformation ‎of the sample has a square-root singularity at a zero point at which two single zeros and a complex ‎pair interconvert. The transmission time is a sum of Lorentzian functions associated with poles and ‎zeros. The sum over poles is the density of states with an average that is independent of scattering ‎and dissipation. But the sum over zeros changes with loss, gain, scattering strength and the number of ‎channels in ways that make it possible to control ultranarrow spectral features in transmission and ‎transmission time. We show that the field, including the contribution of the still coherent incident ‎wave, is a sum over modal partial fractions with amplitudes that are independent of loss and gain. The ‎energy excited may be expressed in terms of the resonances of the medium and is equal to the dwell ‎time even in the presence of loss or gain.‎ 
    more » « less
  2. Light transport in a highly multimode fiber exhibits complex behavior in space, time, frequency, and polarization, especially in the presence of mode coupling. The newly developed techniques of spatial wavefront shaping turn out to be highly suitable to harness such enormous complexity: a spatial light modulator enables precise characterization of field propagation through a multimode fiber, and by adjusting the incident wavefront it can accurately tailor the transmitted spatial pattern, temporal profile, and polarization state. This unprecedented control leads to multimode fiber applications in imaging, endoscopy, optical trapping, and microfabrication. Furthermore, the output speckle pattern from a multimode fiber encodes spatial, temporal, spectral, and polarization properties of the input light, allowing such information to be retrieved from spatial measurements only. This article provides an overview of recent advances and breakthroughs in controlling light propagation in multimode fibers, and discusses newly emerging applications.

     
    more » « less
  3. null (Ed.)
    Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory as representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here. 
    more » « less
  4. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    A focal plane wavefront sensor offers major advantages to adaptive optics, including removal of non-commonpath error and providing sensitivity to blind modes (such as petalling). But simply using the observed point spread function (PSF) is not sufficient for wavefront correction, as only the intensity, not phase, is measured. Here we demonstrate the use of a multimode fiber mode converter (photonic lantern) to directly measure the wavefront phase and amplitude at the focal plane. Starlight is injected into a multimode fiber at the image plane, with the combination of modes excited within the fiber a function of the phase and amplitude of the incident wavefront. The fiber undergoes an adiabatic transition into a set of multiple, single-mode outputs, such that the distribution of intensities between them encodes the incident wavefront. The mapping (which may be strongly non-linear) between spatial modes in the PSF and the outputs is stable but must be learned. This is done by a deep neural network, trained by applying random combinations of spatial modes to the deformable mirror. Once trained, the neural network can instantaneously predict the incident wavefront for any set of output intensities. We demonstrate the successful reconstruction of wavefronts produced in the laboratory with low-wind-effect, and an on-sky demonstration of reconstruction of low-order modes consistent with those measured by the existing pyramid wavefront sensor, using SCExAO observations at the Subaru Telescope. 
    more » « less
  5. Abstract

    Photonic lanterns (PLs) are tapered waveguides that gradually transition from a multimode fiber geometry to a bundle of single-mode fibers (SMFs). They can efficiently couple multimode telescope light into a multimode fiber entrance at the focal plane and convert it into multiple single-mode beams. Thus, each SMF samples its unique mode (lantern principal mode) of the telescope light in the pupil, analogous to subapertures in aperture masking interferometry (AMI). Coherent imaging with PLs can be enabled by the interference of SMF outputs and applying phase modulation, which can be achieved using a photonic chip beam combiner at the backend (e.g., the ABCD beam combiner). In this study, we investigate the potential of coherent imaging by the interference of SMF outputs of a PL with a single telescope. We demonstrate that the visibilities that can be measured from a PL are mutual intensities incident on the pupil weighted by the cross correlation of a pair of lantern modes. From numerically simulated lantern principal modes of a 6-port PL, we find that interferometric observables using a PL behave similarly to separated-aperture visibilities for simple models on small angular scales (<λ/D) but with greater sensitivity to symmetries and capability to break phase angle degeneracies. Furthermore, we present simulated observations with wave front errors (WFEs) and compare them to AMI. Despite the redundancy caused by extended lantern principal modes, spatial filtering offers stability to WFEs. Our simulated observations suggest that PLs may offer significant benefits in the photon-noise-limited regime and in resolving small angular scales at the low-contrast regime.

     
    more » « less