Abstract Sub-surface voids and material heterogeneities resulting from the friction stir welding (FSW) process often necessitate post-weld inspection to ensure the quality of weld obtained from this solid-state welding process. In this context, in-process void detection techniques can potentially help in optimizing the process conditions and thereby reduce expensive and time-consuming post-process inspection of welds. Current in-process void detection techniques rely on approaches that try to directly correlate the part-scale welding quality to void formation, without a fundamental understanding of the underlying mechanics and materials physics that modulate void evolution. In this work, we demonstrate an effective in-process numerical technique that uses process force signals to detect volumetric void formation and connect the variations in the force signals to interactions between the tool probe and the underlying material voids. Our approach relies on a high-fidelity finite element analysis simulation of the FSW process and on correlation of numerically obtained process force signals with the corresponding void structures. This correlation is obtained in the phase-space relating in-plane reaction forces on the tool to the tool rotation angle. We focus on the interactions of the tool geometry and tool motion with the surrounding material undergoing plastic deformation and deduce novel insights into various correlations of tool motion and void formation. Through this approach, we can identify tool-related process conditions that can be optimized to minimize void formation and demonstrate a potential in situ force-based void monitoring method that links to the underlying plastic flow and void structures during the FSW process.
more »
« less
Numerical Investigation Into the Influence of Alloy Type and Thermo-Mechanics on Void Formation in Friction Stir Welding of Aluminum Alloys
Abstract This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18, were investigated under varying traverse speeds. The choice of aluminum alloys enables the investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are as follows: (1) the predicted stir zone and void morphology are in good agreement with the experimental observations, (2) the temperature and plastic strain rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) the material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this study provide a framework for understanding material flow under different process conditions in aluminum alloys and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated.
more »
« less
- Award ID(s):
- 1826104
- PAR ID:
- 10464825
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 145
- Issue:
- 9
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The cost limitations of post-weld inspection have driven the need for in situ process monitoring of subsurface defects. Subsurface defects are believed to be formed due to a breakdown in the intermittent flow of material around the friction stir tool once per revolution. This work examines the intermittent flow of material and its relation to defect formation. In addition, advances have been made in a force-based defect detection model that links changes in process forces to the formation and size of defects. A range of aluminum alloys has been examined, showing that softer aluminum alloys produce less distinct changes in process forces during defect formation and harder aluminum alloys produce more distinct changes when using the same tool geometry.more » « less
-
Perander, L. (Ed.)Retrogression forming and reaging (RFRA) is a new warm-forming process designed to produce automotive structural components from high-strength aluminum alloys. A scientific approach is described to determine appropriate RFRA conditions for AA7075-T6 and is applied to laboratory-scale forming experiments. The concept of reduced time is used with the activation energy of retrogression measured for AA7075-T6 to predict appropriate times and temperatures for retrogression forming. Conditions recommended for AA7075-T6 are retrogression at 200 °C for 3 to 12 min while forming at strain rates of up to 10^{–1} s^{−1}. The recommended reaging heat treatment to fully restore strength to the T6 condition after retrogression forming is 120 °C for 24 h. These RFRA conditions were successfully applied in laboratory-scale experiments to form AA7075-T6 Alclad sheet and produce a final strength equivalent to the T6 condition. Data from tensile tests provide flow stresses and tensile ductilities across the range of conditions appropriate for RFRA.more » « less
-
Replica exchange transition interface sampling simulations in Mg–Al alloys with high vacancy concentrations indicate that the presence of a solute reduces thermodynamic barriers to the clustering of vacancies and the formation of voids. The emergence of local minima in the free energy along the reaction coordinate suggests that void formation may become a multi-step process in the presence of a solute. In this scenario, vacancies agglomerate with solute before they coalesce into a stable void with well-defined internal surfaces. The emergence of vacancy–solute clusters as intermediate states would imply that classical nucleation theory is unlikely to adequately describe void formation in alloys at high vacancy concentrations, a likely precursor for alloy strengthening through nanoscale precipitation.more » « less
-
In this study, the ductile damage responses of high-strength 7000 series aluminum alloy (AA), AA 7075-T6 sheet samples, subjected to the plane strain deformation mode were investigated using finite element (FE) simulations. In the experiments, uniaxial tension (UT) and plane strain tension (PST) tests were conducted to characterize the plasticity and ductile damage behavior of the AA 7075-T6 sheet samples. The limiting dome height (LDH) and V-die air bending tests were conducted to evaluate the ductility of the material subjected to plastic deformation and friction between the tools, and the corresponding fractured samples were qualitatively analyzed in terms of dimples using fractography. FE simulations were performed to predict the ductility of the AA 7075-T6 sheet samples under plane strain deformation using an enhanced Gurson−Tvergaard−Needleman (GTN) model, namely the GTN-shear model. The model was improved by adding the shear dimple effect to the original GTN model. The predicted results in terms of the load–displacement curves and displacements at the onset of failure were in good agreement with experimental data from the aforementioned tests. Furthermore, virtual roll forming simulations were conducted using the GTN-shear model to determine the effect of the prediction on ductile behavior for industrial applications.more » « less