skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intermittent Flow of Material and Force-Based Defect Detection During Friction Stir Welding of Aluminum Alloys
The cost limitations of post-weld inspection have driven the need for in situ process monitoring of subsurface defects. Subsurface defects are believed to be formed due to a breakdown in the intermittent flow of material around the friction stir tool once per revolution. This work examines the intermittent flow of material and its relation to defect formation. In addition, advances have been made in a force-based defect detection model that links changes in process forces to the formation and size of defects. A range of aluminum alloys has been examined, showing that softer aluminum alloys produce less distinct changes in process forces during defect formation and harder aluminum alloys produce more distinct changes when using the same tool geometry.  more » « less
Award ID(s):
1826104
PAR ID:
10099300
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
In: Hovanski Y., Mishra R., Sato Y., Upadhyay P., Yan D. (eds) Friction Stir Welding and Processing X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18, were investigated under varying traverse speeds. The choice of aluminum alloys enables the investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are as follows: (1) the predicted stir zone and void morphology are in good agreement with the experimental observations, (2) the temperature and plastic strain rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) the material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this study provide a framework for understanding material flow under different process conditions in aluminum alloys and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated. 
    more » « less
  2. Abstract Refractory complex concentrated alloys (RCCAs) show potential as the next-generation structural materials due to their superior strength in extreme environments. However, RCCAs processed by metal additive manufacturing (AM) typically suffer from process-related challenges surrounding laser material interaction defects and microstructure control. Multimodalin situtechniques (synchrotron X-ray imaging and diffraction and infrared imaging) and melt pool-level simulations were employed to understand rapid solidification pathways in two representative RCCAs: (i) multi-phase BCC + HCP Ti0.4Zr0.4Nb0.1Ta0.1and (ii) single-phase BCC Ti0.486V0.375Cr0.111Ta0.028. As expected, laser material interaction defects followed similar systematic trends in process parameter space for both alloys. Additionally, both alloys formed a single-phase (BCC) microstructure after rapid solidification processing. However, significant differences in microstructure selection between these alloys were discovered, where Ti0.4Zr0.4Nb0.1Ta0.1showed a mixture of equiaxed and columnar grains, while Ti0.486V0.375Cr0.111Ta0.028was dominated by columnar growth. These behaviors were well described by the influence of undercooling effects on columnar-to-equiaxed transition (CET). Distinct microstructure formation in each alloy was verified through CET predictions via analytical melt pool simulations, which showed a ~ 5 × increase degrees in undercooling for Ti0.4Zr0.4Nb0.1Ta0.1compared to Ti0.486V0.375Cr0.111Ta0.028. Overall, these results show that microstructure control based on modulating the freezing range must be balanced with process considerations which resist defect formation, such as solidification crack formation in RCCAs. Graphical abstract 
    more » « less
  3. Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing. 
    more » « less
  4. Abstract This work studies Metal Inert Gas (MIG) based Wire Arc Additive Manufacturing (WAAM) for nanoparticle enhanced AA7075. MIG WAAM is important for production and large structures due to its high deposition rates compared to Tungsten Inert Gas (TIG) or powder-based AM processes. Both MIG and TIG take advantage of wire feedstock, which is more readily available than powdered metals since the welding technology has been established for decades. Powder based processes allow for more complicated geometries but take significantly more time to produce and can suffer from voids which lead to non-uniform part density. TIG is normally used in welding of aluminum because it results in fewer defects, but the TiC/TiB2 nanoparticles eliminate solidification cracking normally associated with high strength aluminum alloys during welding. Porosity is another problem faced when welding aluminum, which can be affected by many things including deposition parameters, atmosphere and even the welding equipment used. Effects of different deposition parameters have been comprehensively studied including the deposition geometry and metallurgical properties. The process is also monitored with current/voltage measurement and high-speed imaging to understand the droplet transfer mode and molten pool development. The results are used to optimize process parameters to achieve the fewest defects possible while comparing different metal transfer modes. Multi-scale characterizations will be performed to examine the porosity distribution, solidification mode and grain size through optical microscopy. Future works will explore the distribution of secondary phases, precipitates, and nanoparticles through scanning electron microscopy (SEM) as well as conducting some mechanical testing of the as built structures such as hardness mapping and tensile tests. 
    more » « less
  5. Radiation damage in structural materials for nuclear applications is not well-understood, especially when linking the atomic scale damage mechanisms to the macroscopic effects. On a microscopic level, particle radiation creates defects that can accumulate in the material. Defects can also interact with existing features in the material. Since both defects and features have different energies associated with them, investigation of the resulting energy spectrum in a macroscopic sample may offer insight into the connection between microscopic damage and macroscopic properties. In alloys, changes in the size and number of precipitates will be reflected in the amount of energy required to dissolve the precipitates during thermal analysis. This can then be studied using differential scanning calorimetry (DSC). This work explores the sensitivity of the DSC measurement to detect irradiation-induced instability in metastable and secondary phase precipitates in the high-strength aluminum alloy 7075-T6 for extremely low doses of helium-ion and neutron irradiation. The precipitates in aluminum 7075-T6 are expected to grow or shrink, changing the energy spectrum measured by DSC. The magnitude of the change can then be compared to a model of irradiation-induced phase instability. This will demonstrate the ability of this thermal analysis technique to help bridge the gap between microscopic radiation effects and macroscopic properties. 
    more » « less