- Award ID(s):
- 1826104
- PAR ID:
- 10099300
- Date Published:
- Journal Name:
- In: Hovanski Y., Mishra R., Sato Y., Upadhyay P., Yan D. (eds) Friction Stir Welding and Processing X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18, were investigated under varying traverse speeds. The choice of aluminum alloys enables the investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are as follows: (1) the predicted stir zone and void morphology are in good agreement with the experimental observations, (2) the temperature and plastic strain rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) the material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this study provide a framework for understanding material flow under different process conditions in aluminum alloys and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated.more » « less
-
Abstract Refractory complex concentrated alloys (RCCAs) show potential as the next-generation structural materials due to their superior strength in extreme environments. However, RCCAs processed by metal additive manufacturing (AM) typically suffer from process-related challenges surrounding laser material interaction defects and microstructure control. Multimodal
in situ techniques (synchrotron X-ray imaging and diffraction and infrared imaging) and melt pool-level simulations were employed to understand rapid solidification pathways in two representative RCCAs: (i) multi-phase BCC + HCP Ti0.4Zr0.4Nb0.1Ta0.1and (ii) single-phase BCC Ti0.486V0.375Cr0.111Ta0.028. As expected, laser material interaction defects followed similar systematic trends in process parameter space for both alloys. Additionally, both alloys formed a single-phase (BCC) microstructure after rapid solidification processing. However, significant differences in microstructure selection between these alloys were discovered, where Ti0.4Zr0.4Nb0.1Ta0.1showed a mixture of equiaxed and columnar grains, while Ti0.486V0.375Cr0.111Ta0.028was dominated by columnar growth. These behaviors were well described by the influence of undercooling effects on columnar-to-equiaxed transition (CET). Distinct microstructure formation in each alloy was verified through CET predictions via analytical melt pool simulations, which showed a ~ 5 × increase degrees in undercooling for Ti0.4Zr0.4Nb0.1Ta0.1compared to Ti0.486V0.375Cr0.111Ta0.028. Overall, these results show that microstructure control based on modulating the freezing range must be balanced with process considerations which resist defect formation, such as solidification crack formation in RCCAs.Graphical abstract -
Abstract Heteroepitaxial crystalline films underlie many electronic and optical technologies but are prone to forming defects at their heterointerfaces. Atomic‐scale defects such as threading dislocations that propagate into a film impede the flow of charge carriers and light degrading electrical/optical performance of devices. Diagnosis of subsurface defects traditionally requires time‐consuming invasive techniques such as cross‐sectional transmission electron microscopy. Using III–V films grown on Si, noninvasive, bench‐top diagnosis of subsurface defects have been demonstrated by optical second‐harmonic scanning probe microscope. A high‐contrast pattern is observed of subwavelength “hot spots” caused by scattering and localization of fundamental light by defect scattering sites. Size of these observed hotspots are strongly correlated to the density of dislocation defects. The results not only demonstrate a global and versatile method for diagnosing subsurface scattering sites but uniquely elucidate optical properties of disordered media. An extension to third harmonics would enable irregularities detection in non‐χ(2)materials making the technique universally applicable.
-
Radiation damage in structural materials for nuclear applications is not well-understood, especially when linking the atomic scale damage mechanisms to the macroscopic effects. On a microscopic level, particle radiation creates defects that can accumulate in the material. Defects can also interact with existing features in the material. Since both defects and features have different energies associated with them, investigation of the resulting energy spectrum in a macroscopic sample may offer insight into the connection between microscopic damage and macroscopic properties.
In alloys, changes in the size and number of precipitates will be reflected in the amount of energy required to dissolve the precipitates during thermal analysis. This can then be studied using differential scanning calorimetry (DSC). This work explores the sensitivity of the DSC measurement to detect irradiation-induced instability in metastable and secondary phase precipitates in the high-strength aluminum alloy 7075-T6 for extremely low doses of helium-ion and neutron irradiation. The precipitates in aluminum 7075-T6 are expected to grow or shrink, changing the energy spectrum measured by DSC. The magnitude of the change can then be compared to a model of irradiation-induced phase instability. This will demonstrate the ability of this thermal analysis technique to help bridge the gap between microscopic radiation effects and macroscopic properties.
-
Near surface defects can significantly impact the quality of metallic interconnects and other interfaces necessary to create device structures incorporating two-dimensional materials. Furthermore, the impact of such defects can strongly depend on their organization. In this study, we present scanning tunneling microscopy images and tunneling spectroscopy of point and linear defects near the surface of natural MoS2. The point defects share similar structural and electronic characteristics and occur with comparable frequency as subsurface sulfur vacancies observed previously on natural MoS2. The linear defects observed here occur less frequently than the point defects but share the same depth profile and electronic structure. These data indicate that the linear defects are actually a one-dimensional organization of subsurface sulfur vacancies. Our density functional calculations agree with this assessment in that, for sufficient local defect concentrations, it is energetically more favorable for the defects to be organized in a linear fashion rather than as clusters or even isolated single point defects. Given these measurements were taken from naturally formed MoS2, this organization likely occurs during crystal formation. Considering the impact of one-dimensional organization on the local properties of layered materials, and the potential for them to be introduced purposefully during crystal formation, research into the formation mechanism and properties of these defects could enable new paths for defect engineering in MoS2-based systems.