skip to main content

This content will become publicly available on July 1, 2024

Title: Concept2Box: Joint Geometric Embeddings for Learning Two-View Knowledge Graphs
Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.  more » « less
Award ID(s):
2211557 1937599
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: ACL 2023
Page Range / eLocation ID:
10105 to 10118
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taxonomies, which organize knowledge hierarchically, support various practical web applications such as product navigation in online shopping and user profle tagging on social platforms. Given the continued and rapid emergence of new entities, maintaining a comprehensive taxonomy in a timely manner through human annotation is prohibitively expensive. Therefore, expanding a taxonomy automatically with new entities is essential. Most existing methods for expanding taxonomies encode entities into vector embeddings (i.e., single points). However, we argue that vectors are insufcient to model the “is-a” hierarchy in taxonomy (asymmetrical relation), because two points can only represent pairwise similarity (symmetrical relation). To this end, we propose to project taxonomy entities into boxes (i.e., hyperrectangles). Two boxes can be "contained", "disjoint" and "intersecting", thus naturally representing an asymmetrical taxonomic hierarchy. Upon box embeddings, we propose a novel model BoxTaxo for taxonomy expansion. The core of BoxTaxo is to learn boxes for entities to capture their child-parent hierarchies. To achieve this, BoxTaxo optimizes the box embeddings from a joint view of geometry and probability. BoxTaxo also ofers an easy and natural way for inference: examine whether the box of a given new entity is fully enclosed inside the box of a candidate parent from the existing taxonomy. Extensive experiments on two benchmarks demonstrate the efectiveness of BoxTaxo compared to vector based models. 
    more » « less
  2. null (Ed.)
    Neural entity typing models typically represent fine-grained entity types as vectors in a high-dimensional space, but such spaces are not well-suited to modeling these types' complex interdependencies. We study the ability of box embeddings, which embed concepts as d-dimensional hyperrectangles, to capture hierarchies of types even when these relationships are not defined explicitly in the ontology. Our model represents both types and entity mentions as boxes. Each mention and its context are fed into a BERT-based model to embed that mention in our box space; essentially, this model leverages typological clues present in the surface text to hypothesize a type representation for the mention. Box containment can then be used to derive both the posterior probability of a mention exhibiting a given type and the conditional probability relations between types themselves. We compare our approach with a vector-based typing model and observe state-of-the-art performance on several entity typing benchmarks. In addition to competitive typing performance, our box-based model shows better performance in prediction consistency (predicting a supertype and a subtype together) and confidence (i.e., calibration), demonstrating that the box-based model captures the latent type hierarchies better than the vector-based model does. 
    more » « less
  3. Abstract

    Ideological divisions in the United States have become increasingly prominent in daily communication. Accordingly, there has been much research on political polarization, including many recent efforts that take a computational perspective. By detecting political biases in a text document, one can attempt to discern and describe its polarity. Intuitively, the named entities (i.e., the nouns and the phrases that act as nouns) and hashtags in text often carry information about political views. For example, people who use the term “pro-choice” are likely to be liberal and people who use the term “pro-life” are likely to be conservative. In this paper, we seek to reveal political polarities in social-media text data and to quantify these polarities by explicitly assigning a polarity score to entities and hashtags. Although this idea is straightforward, it is difficult to perform such inference in a trustworthy quantitative way. Key challenges include the small number of known labels, the continuous spectrum of political views, and the preservation of both a polarity score and a polarity-neutral semantic meaning in an embedding vector of words. To attempt to overcome these challenges, we propose thePolarity-awareEmbeddingMulti-task learning (PEM) model. This model consists of (1) a self-supervised context-preservation task, (2) an attention-based tweet-level polarity-inference task, and (3) an adversarial learning task that promotes independence between an embedding’s polarity component and its semantic component. Our experimental results demonstrate that ourPEMmodel can successfully learn polarity-aware embeddings that perform well at tweet-level and account-level classification tasks. We examine a variety of applications—including a study of spatial and temporal distributions of polarities and a comparison between tweets from Twitter and posts from Parler—and we thereby demonstrate the effectiveness of ourPEMmodel. We also discuss important limitations of our work and encourage caution when applying thePEMmodel to real-world scenarios.

    more » « less
  4. A wide variety of machine learning tasks such as knowledge base completion, ontology alignment, and multi-label classification can benefit from incorporating into learning differentiable representations of graphs or taxonomies. While vectors in Euclidean space can theoretically represent any graph, much recent work shows that alternatives such as complex, hyperbolic, order, or box embeddings have geometric properties better suited to modeling real-world graphs. Experimentally these gains are seen only in lower dimensions, however, with performance benefits diminishing in higher dimensions. In this work, we introduce a novel variant of box embeddings that uses a learned smoothing parameter to achieve better representational capacity than vector models in low dimensions, while also avoiding performance saturation common to other geometric models in high dimensions. Further, we present theoretical results that prove box embeddings can represent any DAG. We perform rigorous empirical evaluations of vector, hyperbolic, and region-based geometric representations on several families of synthetic and real-world directed graphs. Analysis of these results exposes correlations between different families of graphs, graph characteristics, model size, and embedding geometry, providing useful insights into the inductive biases of various differentiable graph representations. 
    more » « less
  5. null (Ed.)
    Knowledge graphs (KGs) are powerful tools that codify relational behaviour between entities in knowledge bases. KGs can simultaneously model many different types of subject-predicate-object and higher-order relations. As such, they offer a flexible modeling framework that has been applied to many areas, including biology and pharmacology – most recently, in the fight against COVID-19. The flexibility of KG modeling is both a blessing and a challenge from the learning point of view. In this paper we propose a novel coupled tensor-matrix framework for KG embedding. We leverage tensor factorization tools to learn concise representations of entities and relations in knowledge bases and employ these representations to perform drug repurposing for COVID-19. Our proposed framework is principled, elegant, and achieves 100% improvement over the best baseline in the COVID-19 drug repurposing task using a recently developed biological KG. 
    more » « less