skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring social and cognitive engagement in small groups through a community of learners (CoL) lens
A variety of research studies reveal the advantages of actively engaging students in the learning process through collaborative work in the classroom. However, the complex nature of the learning environment in large college general chemistry courses makes it challenging to identify the different factors that affect students’ cognitive and social engagement while working on in-class tasks. To provide insights into this area, we took a closer look at students’ conversations during in-class activities to characterize typical discourse patterns and expressed chemical thinking in representative student groups in samples collected in five different learning environments across four universities. For this purpose, we adapted and applied a ‘Community of Learners’ (CoL) theoretical perspective to characterize group activity through the analysis of student discourse. Within a CoL perspective, the extent to which a group functions as a community of learners is analyzed along five dimensions including Community of Discourse (CoD), Legitimization of Differences (LoD), Building on Ideas (BoI), Reflective Learning (RL), and Community of Practice (CoP). Our findings make explicit the complexity of analyzing student engagement in large active learning environments where a multitude of variables can affect group work. These include, among others, group size and composition, the cognitive level of the tasks, the types of cognitive processes used to complete tasks, and the motivation and willingness of students to substantively engage in disciplinary reasoning. Our results point to important considerations in the design and implementation of active learning environments that engage more students with chemical ideas at higher levels of reasoning.  more » « less
Award ID(s):
1914510
PAR ID:
10464892
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
24
Issue:
3
ISSN:
1109-4028
Page Range / eLocation ID:
1077 to 1099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Several studies have highlighted the positive effects that active learning may have on student engagement and performance. However, the influence of active learning strategies is mediated by several factors, including the nature of the learning environment and the cognitive level of in-class tasks. These factors can affect different dimensions of student engagement such as the nature of social processing in student groups, how knowledge is used and elaborated upon by students during in-class tasks, and the amount of student participation in group activities. In this study involving four universities in the US, we explored the association between these different dimensions of student engagement and the cognitive level of assigned tasks in five distinct general chemistry learning environments where students were engaged in group activities in diverse ways. Our analysis revealed a significant association between task level and student engagement. Retrieval tasks often led to a significantly higher number of instances of no interaction between students and individualistic work, and a lower number of knowledge construction and collaborative episodes with full student participation. Analysis tasks, on the other hand, were significantly linked to more instances of knowledge construction and collaboration with full group participation. Tasks at the comprehension level were distinctive in their association with more instances of knowledge application and multiple types of social processing. The results of our study suggest that other factors such as the nature of the curriculum, task timing, and class setting may also affect student engagement during group work. 
    more » « less
  2. Abstract Student-centered instruction allows students to take ownership over their learning in the classroom. However, these settings do not always promote productive engagement. Using discourse analysis, student engagement can be analyzed based on how they are interacting with each other while completing in-class group activities. Previous analyses of student engagement in science settings have used methods that do not capture the intricacies of student group interactions such as the flow of conversation and nature of student utterances outside of argumentation or reasoning. However, these features are important to accurately assess student engagement. This study proposes a tiered analytical framework and visualization scheme for analyzing group discussion patterns that allow for a detailed analysis of student discourse moves while discussing scientific topics. This framework allows a researcher to see the flow of an entire conversation within a single schematic. The Student Interaction Discourse Moves framework can be used to extend studies using discourse analysis to determine how student groups work through problems. 
    more » « less
  3. Rich classroom discussion, or discourse, has long been a recommended pedagogical practice in K-12 math and science education. Research shows that discourse is beneficial for all learners, but especially for English learners and minoritized students in STEM. Discourse helps develop students' agency, academic language, and conceptual understanding. Some K-12 computer science (CS) curricula incorporate student discourse, but we believe it is under-used. In this paper, we review how discourse helps students learn, discuss the use of discourse in CS and math education, share ideas for promoting discourse in CS classrooms, and call on curriculum developers, teacher professional learning providers, and researchers to support the increased use of discourse in K-12 CS education. 
    more » « less
  4. Ayalon, M; Koichu, B; Leikin, R; Rubel, L; Tabach, M (Ed.)
    We used videotaped enactments of high cognitive demand tasks to investigate whether teachers who were engaged in the teaching practice of building—and thus were focused on having the class collaboratively make sense of their peers’ high-leverage mathematical contributions—provided scaffolding that supported the maintenance of high cognitive demand tasks. Attempting to build on high-leverage student thinking seemed to mitigate the teachers’ tendencies to provide inappropriate amounts of scaffolding because they: (1) believed the building practice required them to refrain from showing the students how to solve the task; (2) wanted to elicit student reasoning about their peer’s contribution for the building practice to utilize; and (3) saw the benefits of their students being able to engage in the mathematical thinking themselves. 
    more » « less
  5. To support teachers in providing all students with opportunities to engage in engineering learning activities, research must examine the ways that elementary teachers support how diverse learners engage with engineering ideas and practices. This study focuses on two teachers' verbal supports in classroom discussions across two class sections of a four-week, NGSS-aligned unit that challenged students to redesign their school to reduce water runoff. We examine the research question: How and to what extent do upper-elementary teachers verbally support students' engagement with engineering practices across diverse classroom contexts in an NGSS-aligned integrated science unit? Classroom audio data was collected daily and coded to analyze support through different purposes of teacher talk. Results reveal the purpose of teachers’ talk often varied between the class sections depending on the instructional activity and indicate that teachers utilized a variety of supports toward students' engagement in different engineering practices. In one class, with a large percentage of students with individualized educational plans, teachers provided more epistemic talk about the engineering practices to contextualize the particular activities. For the other class, with a large percentage of students in advanced mathematics, teachers provided more opportunities for students to engage in discussion and support for students to do engineering. This difference in supports may decrease the opportunities for some students to rigorously engage in engineering ideas and practices. This study can inform future research on the kinds of educative supports needed to guide teaching of integrated engineering activities for diverse students. 
    more » « less