skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 24, 2026

Title: “You get to tinker with your brain”: Middle school students’ perspectives on three-dimensional, phenomenon-driven assessments
In response to reform efforts to center students’ interest and identity in the context of assessment, we pilot tested a set of three-dimensional, phenomenon-driven assessment tasks and asked students to respond to additional items that prompted them to reflect on their experience with the tasks. Using a qualitative approach, we analyzed written responses from 502 middle school students across the United States. Through inductive and deductive coding, we developed a comprehensive framework that captures students' experiences across five dimensions: cognitive engagement, affective engagement, relevance to students’ lives, beyond-classroom connections, and assessment design and features. By exploring these dimensions, the framework aims to provide a comprehensive lens for understanding how students experience science assessments, revealing key insights into the factors that influence their engagement and learning. Ultimately, this framework can serve as a practical tool for educators and researchers to analyze and improve science assessments by centering students' voices, thereby fostering deeper learning, promoting student agency, and supporting all learners.  more » « less
Award ID(s):
2201438
PAR ID:
10604027
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Association for Research in Science Teaching International Conference
Date Published:
Format(s):
Medium: X
Location:
National Harbor, MD
Sponsoring Org:
National Science Foundation
More Like this
  1. The emphasis on an equitable vision of science learning in current science education reform efforts sees students as contributing to knowledge-building through drawing on their rich cultural and linguistic backgrounds while engaging in the three dimensions to make sense of compelling, relevant phenomena. However, this vision will not be fully realized without coherence between curriculum, instruction, and assessment. As a majority of states have now adopted standards aligned to or adapted from the Framework, we see an urgent need for assessments that can support rather than conflict with equitable science learning. In this study, we seek to understand the current state of Framework-aligned assessment tasks. We have amassed 352 middle school tasks, originating from state-level assessment banks and assessment developers at universities or research organizations. Our preliminary findings from characterizing 104 tasks revealed that the majority of tasks target dimensions of the NGSS or Framework-based standards and include a phenomenon. However, there are challenges in framing phenomena that attend to students’ interests and identities and engage students in three-dimensional sensemaking. Additionally, some phenomena are not based in real-world observations and are not authentic from students’ perspectives, which makes it difficult for students to see connections of local or global relevance. 
    more » « less
  2. Experience with geographic information systems (GIS) can improve students’ spatial skills and provide a foundation for success in STEM (Jant et al., 2019). Researchers and educators co-designed a GIS unit in which high school students learned to use ArcGIS software by exploring geospatial patterns in their local communities. Across three teachers, 134 students participated in the unit and completed a geospatial problem-solving assessment. Students’ performance on the assessment significantly increased from pre- to post-test. Students whose teachers had more GIS experience and completed graded GIS assessments scored higher on geospatial assessments and used more spatial language than students whose teachers had less GIS experience and graded on participation. Students’ expectancy, value, and cost of computer science varied across teachers, and may be linked to students’ ability to devote time to mapbuilding and their engagement with a GIS careers guide. We discuss the impacts of teacher training and lesson implementation on students’ geospatial thinking. 
    more » « less
  3. ABSTRACT This is a cross institution project involving four Institutes of Technology in Ireland. The objective of this project is to assess the use of technology to enhance the assessment of laboratory sessions in Science and Health. In science, health and engineering, the laboratory sessions are at the core of the learning process for skill development. These laboratory sessions focus on the skills acquisition. The Irish Institute of Technology sector, in particular, develops these skills and considers them essential for ‘professionally ready’ graduates. In terms of student progression and retention, the assessment structure has been identified as having a significant impact on student engagement. The Technology Enhanced Assessment Methods (TEAM) project led by Dundalk Institute of Technology and partnering with Institute of Technology Sligo, Athlone Institute of Technology and Institute of Technology Carlow is exploring the potential offered by digital technologies to address these concerns. It aims to develop a framework for applying the principles of effective assessment and feedback to practical assessment. The TEAM project also aims to facilitate dialogue among stakeholders about what it is we want student to learn in laboratory sessions and how our assessment can facilitate this. A peer network of discipline-specific academics and students in the Science and Health field has been established across all four Institutes. As the network focuses on authentic skills assessment in all core modules, including physics and chemistry, the best practice from this project will inform future assessment procedures across laboratory sessions and may be considered for application within a Science and Materials Engineering context. Assessing the skills acquired in this environment takes many forms. Using student and stakeholder feedback along with an extensive literature review of the area, the team identified key technologies that cut across science and health disciplines, with the potential to influence and enable the learning process. The emphasis was on developing a powerful learning environment approach to enable students to deepen their learning through engagement with the process. The areas identified are: (i) Pre-practical preparation (videos and quizzes), (ii) Electronic laboratory notebooks and ePortfolios, (iii) Digital Feedback technologies and (iv) Rubrics). This paper describes the student experience and perceptions of the adoption of digital technology in science practical assessments. It also describes the process involved in setting up the pilot structure and it presents the initial results from the student survey. 
    more » « less
  4. There is increasing interest in broadening participation in computational thinking (CT) by integrating CT into pre-college STEM curricula and instruction. Science, in particular, is emerging as an important discipline to support integrated learning. This highlights the need for carefully designed assessments targeting the integration of science and CT to help teachers and researchers gauge students’ proficiency with integrating the disciplines. We describe a principled design process to develop assessment tasks and rubrics that integrate concepts and practices across science, CT, and computational modeling. We conducted a pilot study with 10 high school students who responded to integrative assessment tasks as part of a physics-based computational modeling unit. Our findings indicate that the tasks and rubrics successfully elicit both Physics and CT constructs while distinguishing important aspects of proficiency related to the two disciplines. This work illustrates the promise of using such assessments formatively in integrated STEM and computing learning contexts. 
    more » « less
  5. null (Ed.)
    While systems engineers rely on systems thinking skills in their work, given the increasing complexity of modern engineering problems, engineers across disciplines need to be able to engage in systems thinking, including what we term comprehensive systems thinking. Due to the inherent complexity of systems thinking, and more specifically comprehensive systems thinking, it is not easy to know how well students (and practitioners) are learning and leveraging systems thinking approaches. Thus, engineering managers and educators can benefit from systems thinking assessments. A variety of systems thinking assessments exist that are relevant to engineers, including some focused on the demonstration of systems thinking knowledge or skills and others measuring attitudes, interests, or values related to systems thinking. Starting with a collection of systems thinking assessments from a systematic literature review conducted by our team, we analyzed in-depth those behavior-based assessments that included the creation of a visual representation and were open-ended, i.e., it did not presuppose or provide answers. The findings from this in-depth analysis of systems thinking behavior-based assessments identified 1) six visualization types that were leveraged, 2) dimensions of systems thinking that were assessed and 3) tensions between the affordances of different assessments. In addition, we consider the ways assessments can be used. For example, using assessments to provide feedback to students or using assessments to determine which students are meeting defined learning goals. We draw on our findings to highlight opportunities for future comprehensive systems thinking behavior-based assessment development. 
    more » « less