skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D printed microfluidics: advances in strategies, integration, and applications
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.  more » « less
Award ID(s):
2020695
PAR ID:
10464994
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
23
Issue:
5
ISSN:
1473-0197
Page Range / eLocation ID:
1279 to 1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microfluidics has earned a reputation for providing numerous transformative but disconnected devices and techniques. Active research seeks to address this challenge by integrating microfluidic components, including embedded miniature pumps. However, a significant portion of existing microfluidic integration relies on the time-consuming manual fabrication that introduces device variations. We put forward a framework for solving this disconnect by combining new pumping mechanics and 3D printing to demonstrate several novel, integrated and wirelessly driven microfluidics. First, we characterized the simplicity and performance of printed microfluidics with a minimum feature size of 100 µm. Next, we integrated a microtesla (µTesla) pump to provide non-pulsatile flow with reduced shear stress on beta cells cultured on-chip. Lastly, the integration of radio frequency (RF) device and a hobby-grade brushless motor completed a self-enclosed platform that can be remotely controlled without wires. Our study shows how new physics and 3D printing approaches not only provide better integration but also enable novel cell-based studies to advance microfluidic research. 
    more » « less
  2. Three-dimensional (3D) printing has emerged as a transformative technology for fabricating complex microfluidic devices, enabling features that were previously unattainable with traditional layer-by-layer soft lithography. One key challenge in advancing 3D-printed microfluidics is the integration of functional microvalves across multiple spatial orientations. This study explores the design, simulation, and experimental realization of novel microvalve configurations to overcome the limitations of conventional, single-plane valves. We hypothesize that non-traditional valve orientations, such as those with vertically printed membranes or perpendicular control channels, present unique fabrication and operational challenges, including membrane delamination and stress-induced failure. To address these issues, we developed optimized geometries and fabrication techniques, supported by computational fluid dynamics (CFD) simulations to predict and mitigate stress concentrations. Our results demonstrate successful implementation of previously unreported valve configurations, validated through pressure testing and flow control experiments. These advancements expand the versatility of 3D-printed microfluidic systems, paving the way for more robust and adaptable devices in biomedical, chemical, and environmental applications. 
    more » « less
  3. Skin-interfaced wearable systems with integrated microfluidic structures and sensing capabilities offer powerful platforms for monitoring the signals arising from natural physiological processes. This paper introduces a set of strategies, processing approaches, and microfluidic designs that harness recent advances in additive manufacturing [three-dimensional (3D) printing] to establish a unique class of epidermal microfluidic (“epifluidic”) devices. A 3D printed epifluidic platform, called a “sweatainer,” demonstrates the potential of a true 3D design space for microfluidics through the fabrication of fluidic components with previously inaccessible complex architectures. These concepts support integration of colorimetric assays to facilitate in situ biomarker analysis operating in a mode analogous to traditional epifluidic systems. The sweatainer system enables a new mode of sweat collection, termed multidraw, which facilitates the collection of multiple, independent sweat samples for either on-body or external analysis. Field studies of the sweatainer system demonstrate the practical potential of these concepts. 
    more » « less
  4. Engineered living materials (ELMs) are an emerging class of biohybrid materials that have shown great promise with advanced capabilities unachievable by conventional materials. However, application of ELMs outside of the laboratory has been limited due to the need for periodic media replenishment or complete media immersion. We herein demonstrated the integration of capillary microfluidics for the autonomous and pump-free hydration of ELM hydrogels. We optimized 3D printing parameters, including exposure time and build plate lift and retract distances, to obtain microchannel dimensions capable of spontaneous capillary flow using a low-cost liquid crystal display stereolithographic apparatus (LCD-SLA) 3D printer and two hydrogel resins that are suitable for ELMs. Microchannel dimensions were accurate with ≤ 10% deviation between designed and measured widths and precise with coefficients of variation (CVs) <5% for microchannels ≥ 206.4 µm. We demonstrated proof-of-concept spontaneous capillary flow in 3D printed microfluidic devices using dye-incorporated lysogeny broth (LB). Snapshots of the devices captured up to 24 hours showed the diffusion of dye-incorporated LB throughout the bulk material. Through this proof-of-concept study, we have showcased the feasibility of integrating capillary microfluidics with ELMs for the autonomous and pump-free flow of fluids towards self-sustaining and long-term hydration. 
    more » « less
  5. Abstract The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine. 
    more » « less