skip to main content


This content will become publicly available on September 24, 2024

Title: High‐Throughput Automated Exploration of Phase Growth Behaviors in Quasi‐2D Formamidinium Metal Halide Perovskites
Abstract

Quasi‐2D metal halide perovskites (MHPs) are an emerging material platform for sustainable functional optoelectronics, but the uncontrollable, broad phase distribution remains a critical challenge for applications. Nevertheless, the basic principles for controlling phases in quasi‐2D MHPs remain poorly understood, due to the rapid crystallization kinetics during the conventional thin‐film fabrication process. Herein, a high‐throughput automated synthesis‐characterization‐analysis workflow is implemented to accelerate material exploration in formamidinium (FA)‐based quasi‐2D MHP compositional space, revealing the early‐stage phase growth behaviors fundamentally determining the phase distributions. Upon comprehensive exploration with varying synthesis conditions including 2D:3D composition ratios, antisolvent injection rates, and temperatures in an automated synthesis‐characterization platform, it is observed that the prominentn= 2 2D phase restricts the growth kinetics of 3D‐like phases—α‐FAPbI3MHPs with spacer‐coordinated surface—across the MHP compositions. Thermal annealing is a critical step for proper phase growth, although it can lead to the emergence of unwanted local PbI2crystallites. Additionally, fundamental insights into the precursor chemistry associated with spacer‐solvent interaction determining the quasi‐2D MHP morphologies and microstructures are demonstrated. The high‐throughput study provides comprehensive insights into the fundamental principles in quasi‐2D MHP phase control, enabling new control of the functionalities in complex materials systems for sustainable device applications.

 
more » « less
Award ID(s):
2043205
NSF-PAR ID:
10465042
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
43
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although metal halide perovskite (MHP) light‐emitting diodes (LEDs) have demonstrated great potential in terms of electroluminescence efficiency, the operational stability of MHP LEDs currently remains the biggest bottleneck toward their practical usage. Well‐confined excitons/charge carriers in a dielectric/quantum well based on conventional spatial or potential confinement approaches substantially enhance radiative recombination in MHPs, but an increased surface‐to‐volume ratio and multiphase interfaces likely result in a high degree of surface or interface defect states, which brings about a critical environmentally/operationally vulnerable point on LED stability. Here, an effective solution is suggested to mitigate such drawbacks using strategically designed surface‐2D/bulk‐3D heterophased MHP nanograins for long‐term‐stable LEDs. The 2D surface‐functionalized MHP renders significantly reduced trap density, environmental stability, and an ion‐migration‐immune surface in addition to a fast radiative recombination owing to its spatially and potentially confined charge carriers, simultaneously. As a result, heterophased MHP LEDs show substantial improvement in operational lifetime (T50: >200 h) compared to conventional pure 3D or quasi‐2D counterparts (T50: < 0.2 h) as well as electroluminescence efficiency (surface‐2D/bulk‐3D: ≈7.70 ph per el% and pure 3D: ≈0.46 ph per el%).

     
    more » « less
  2. null (Ed.)
    Abstract Ultrafast laser 3D lithography based on non-linear light–matter interactions, widely known as multi-photon lithography (MPL), offers unrivaled precision rapid prototyping and flexible additive manufacturing options. 3D printing equipment based on MPL is already commercially available, yet there is still no comprehensive understanding of factors determining spatial resolution, accuracy, fabrication throughput, repeatability, and standardized metrology methods for the accurate characterization of the produced 3D objects and their functionalities. The photoexcitation mechanisms, spatial-control or photo-modified volumes, and the variety of processable materials are topics actively investigated. The complexity of the research field is underlined by a limited understanding and fragmented knowledge of light-excitation and material response. Research to date has only provided case-specific findings on photoexcitation, chemical modification, and material characterization of the experimental data. In this review, we aim to provide a consistent and comprehensive summary of the existing literature on photopolymerization mechanisms under highly confined spatial and temporal conditions, where, besides the excitation and cross-linking, parameters such as diffusion, temperature accumulation, and the finite amount of monomer molecules start to become of critical importance. Key parameters such as photoexcitation, polymerization kinetics, and the properties of the additively manufactured materials at the nanoscale in 3D are examined, whereas, the perspectives for future research and as well as emerging applications are outlined. 
    more » « less
  3. null (Ed.)
    Atomistic simulation techniques have become an indispensable tool to acquire a fundamental understanding of growth and structural characteristics of two-dimensional (2D) materials of interest, thereby accelerating experimental research in the same field. A new ReaxFF reactive force field presented here is the first comprehensive empirical potential that is explicitly designed to capture the most prominent features of 2D WSe2 solid-phase chemistry, such as defect formation as a function of local geometry and chalcogen chemical potential, vacancy migration and phase transition, thus enabling cost-effective and reliable characterization of 2D WSe2 at large length scales and time scales much longer than what is accessible by first-principles theory. This potential, validated using extensive first-principles energetics data on both periodic and nonperiodic systems and experimental measurements, can accurately describe the mechanochemical coupling between monolayer deformations and vacancy energetics, providing valuable atomistic insights into the morphological evolution of a monolayer in different environments in terms of loading conditions and various concentrations and distributions of defects. Since understanding how growth is affected by the local chemical environment is vital to fabricating efficient and functional atomically thin 2D WSe2, the new ReaxFF description enables investigations of edge-controlled growth of single crystals of 2D WSe2 using reactive environments closely matching experimental conditions at a low computational cost. 
    more » « less
  4. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices. 
    more » « less
  5. Abstract

    Biomineralized materials are sophisticated material systems with hierarchical 3D material architectures, which are broadly used as model systems for fundamental mechanical, materials science, and biomimetic studies. The current knowledge of the structure of biological materials is mainly based on 2D imaging, which often impedes comprehensive and accurate understanding of the materials’ intricate 3D microstructure and consequently their mechanics, functions, and bioinspired designs. The development of 3D techniques such as tomography, additive manufacturing, and 4D testing has opened pathways to study biological materials fully in 3D. This review discusses how applying 3D techniques can provide new insights into biomineralized materials that are either well known or possess complex microstructures that are challenging to understand in the 2D framework. The diverse structures of biomineralized materials are characterized based on four universal structural motifs. Nacre is selected as an example to demonstrate how the progression of knowledge from 2D to 3D can bring substantial improvements to understanding the growth mechanism, biomechanics, and bioinspired designs. State‐of‐the‐art multiscale 3D tomographic techniques are discussed with a focus on their integration with 3D geometric quantification, 4D in situ experiments, and multiscale modeling. Outlook is given on the emerging approaches to investigate the synthesis–structure–function–biomimetics relationship.

     
    more » « less