skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Throughput Automated Exploration of Phase Growth Behaviors in Quasi‐2D Formamidinium Metal Halide Perovskites
Abstract Quasi‐2D metal halide perovskites (MHPs) are an emerging material platform for sustainable functional optoelectronics, but the uncontrollable, broad phase distribution remains a critical challenge for applications. Nevertheless, the basic principles for controlling phases in quasi‐2D MHPs remain poorly understood, due to the rapid crystallization kinetics during the conventional thin‐film fabrication process. Herein, a high‐throughput automated synthesis‐characterization‐analysis workflow is implemented to accelerate material exploration in formamidinium (FA)‐based quasi‐2D MHP compositional space, revealing the early‐stage phase growth behaviors fundamentally determining the phase distributions. Upon comprehensive exploration with varying synthesis conditions including 2D:3D composition ratios, antisolvent injection rates, and temperatures in an automated synthesis‐characterization platform, it is observed that the prominentn= 2 2D phase restricts the growth kinetics of 3D‐like phases—α‐FAPbI3MHPs with spacer‐coordinated surface—across the MHP compositions. Thermal annealing is a critical step for proper phase growth, although it can lead to the emergence of unwanted local PbI2crystallites. Additionally, fundamental insights into the precursor chemistry associated with spacer‐solvent interaction determining the quasi‐2D MHP morphologies and microstructures are demonstrated. The high‐throughput study provides comprehensive insights into the fundamental principles in quasi‐2D MHP phase control, enabling new control of the functionalities in complex materials systems for sustainable device applications.  more » « less
Award ID(s):
2043205
PAR ID:
10465042
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
43
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The intriguing functionalities of emerging quasi‐2D metal halide perovskites (MHPs) have led to further exploration of this material class for sustainable and scalable optoelectronic applications. However, the chemical complexities in precursors—primarily determined by the 2D:3D compositional ratio—result in uncontrolled phase heterogeneities in these materials, which compromises the optoelectronic performances. Yet, this phenomenon remains poorly understood due to the massive quasi‐2D compositional space. To systematically explore the fundamental principles, herein, a high‐throughput automated synthesis‐characterization workflow is designed and implemented to formamidinium (FA)‐based quasi‐2D MHP system. It is revealed that the stable 3D‐like phases, where the α‐FAPbI3surface is passivated by 2D spacers, exclusively emerge at the compositional range (35–55% of FAPbI3), deviating from the stoichiometric considerations. A quantitative crystallographic study via high‐throughput grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) experiments integrated with automated peak analysis function quickly reveals that the 3D‐like phases are vertically aligned, facilitating vertical charge conduction that can be beneficial for optoelectronic applications. Together, this study uncovers the optimal 2D:3D compositional range for complex quasi‐2D MHP systems, realizing promising optoelectronic functionalities. The automated experimental workflow significantly accelerates materials discoveries and processing optimizations that are transferrable to other deposition methods, while providing fundamental insights into complex materials systems. 
    more » « less
  2. Abstract Unlike single‐component 2D metal halide perovskites (MHPs) exhibiting sharp excitonic photoluminescence (PL), a broadband PL emerges in mixed Pb‐Sn 2D lattices. Two physical models –self‐trapped exciton and defect‐induced Stokes‐shift – are proposed to explain this unconventional phenomenon. However, the explanations provide limited rationalizations without consideration of the formidable compositional space, and thus, the fundamental origin of broadband PL remains elusive. Herein, the high‐throughput automated experimental workflow is established to systematically explore the broadband PL in mixed Pb‐Sn 2D MHPs, employing PEA (Phenethylammonium) as a model cation known to work as a rigid organic spacer. Spectrally, the broadband PL becomes further broadened with rapid PEA2PbI4phase segregation with increasing Pb concentrations during early‐stage crystallization. Counterintuitively, MHPs with high Pb concentrations exhibit prolonged PL lifetimes. Hyperspectral microscopy identifies substantial PEA2PbI4phase segregation in those films, hypothesizing that the establishment of charge transfer excitons by the phase segregation upon crystallization at high‐Pb compositions results in distinctive PL properties. These results indicate that two independent mechanisms—defect‐induced Stoke‐shifts and the establishment of charge transfer excitons by phase segregation—coexist which significantly correlates with the Pb:Sn ratio, thereby simultaneously contributing to the broadband PL emission in 2D mixed Pb‐Sn HPs. 
    more » « less
  3. Abstract Hybrid metal halide perovskite (MHP) materials, while being promising for photovoltaic technology, also encounter challenges related to material stability. Combining 2D MHPs with 3D MHPs offers a viable solution, yet there is a gap in the understanding of the stability among various 2D materials. The mechanical, ionic, and environmental stability of various 2D MHP ligands are reported, and an improvement with the use of a quater‐thiophene‐based organic cation (4TmI) that forms an organic‐semiconductor incorporated MHP structure is demonstrated. It is shown that the best balance of mechanical robustness, environmental stability, ion activation energy, and reduced mobile ion concentration under accelerated aging is achieved with the usage of 4TmI. It is believed that by addressing mechanical and ion‐based degradation modes using this built‐in barrier concept with a material system that also shows improvements in charge extraction and device performance, MHP solar devices can be designed for both reliability and efficiency. 
    more » « less
  4. Abstract Cesium‐based quasi‐2D halide perovskites (HPs) offer promising functionalities and low‐temperature manufacturability, suited to stable tandem photovoltaics. However, the chemical interplays between the molecular spacers and the inorganic building blocks during crystallization cause substantial phase complexities in the resulting matrices. To successfully optimize and implement the quasi‐2D HP functionalities, a systematic understanding of spacer chemistry, along with the seamless navigation of the inherently discrete molecular space, is necessary. Herein, by utilizing high‐throughput automated experimentation, the phase complexities in the molecular space of quasi‐2D HPs are explored, thus identifying the chemical roles of the spacer cations on the synthesis and functionalities of the complex materials. Furthermore, a novel active machine learning algorithm leveraging a two‐stage decision‐making process, called gated Gaussian process Bayesian optimization is introduced, to navigate the discrete ternary chemical space defined with two distinctive spacer molecules. Through simultaneous optimization of photoluminescence intensity and stability that “tailors” the chemistry in the molecular space, a ternary‐compositional quasi‐2D HP film realizing excellent optoelectronic functionalities is demonstrated. This work not only provides a pathway for the rational and bespoke design of complex HP materials but also sets the stage for accelerated materials discovery in other multifunctional systems. 
    more » « less
  5. While crystalline 2D metal halide perovskites (MHPs) represent a well-celebrated semiconductor class, with ensuing applications in the fields of photovoltaics, emitters, and sensors, the recent discovery of glass formation in an MHP opens many new opportunities associated with reversible glass-crystalline switching, with each state offering distinct optoelectronic properties. However, the previously reported [S-(−)-1-(1-naphthyl)ethylammonium]2PbBr4 perovskite is a strong glass former with sluggish glass-crystal transformation timescales, pointing to a need for glassy MHPs with a broader range of compositions and crystallization kinetics. Herein we report glass formation in low melting temperature 1-MeHa2PbI4 (1-MeHa = 1-methyl-hexylammonium) using ultrafast calorimetry, thereby extending the range of MHP glass formation across a broader range of organic (fused ring to branched aliphatic) and halide (bromide to iodide) compositions. The importance of a slight loss of organic and hydrogen iodide components from the MHP in stabilizing the glassy state is elucidated. Furthermore, the underlying kinetics of glass-crystal transformation, including activation energies, crystal growth rate, Angell plot, and fragility index is studied using a combination of kinetic, thermodynamic, and rheological modeling techniques. An inferred fast crystal growth rate of 0.21 m/s for 1-MeHa2PbI4 shows promise toward suitability in extended application spaces, for example in metamaterials, nonvolatile memory, and optical and neuromorphic computing devices. 
    more » « less