skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selective Hybrid EDFA/Raman Amplifier Placement to Avoid Lightpath Degradation in (C+L) Networks
We investigate optimized placement of hybrid EDFA/Raman amplifiers in (C+L) networks to avoid lightpath degradation due to ISRS. We numerically compare eight strategies for amplifier deployment showing that an optimized placement of Raman amplification can lead to 40% fewer amplifiers compared to baseline deployment practices.  more » « less
Award ID(s):
2226042
PAR ID:
10465063
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
European Conference on Optical Communication
ISSN:
2688-2531
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A semi-analytic model of the amplification process is presented for Raman amplifiers made with graded-index multimode fibers. When the pump beam remains much more intense than the signal being amplified, it evolves in a self-similar fashion and recovers its initial width periodically. Using this feature, the width of the amplified signal is found to satisfy an equation whose form is similar to that of a damped harmonic oscillator. We use this equation to discuss the spatial beam narrowing occurring inside a Raman amplifier. In addition to oscillating with a period ∼1mm, the beam also narrows down during its amplification inside a graded-index fiber on a length scale ∼1m. The main advantage of our simplified approach is that it provides an analytic expression for the damping distance of width oscillations that shows clearly the role played by various physical parameters. 
    more » « less
  2. Direct bandgap group IV materials could provide intimate integration of lasers, amplifiers, and compact modulators within complementary metal–oxide–semiconductor for smaller, active silicon photonics. Dilute germanium carbides (GeC) with ∼1 at. % C offer a direct bandgap and strong optical emission, but energetic carbon sources such as plasmas and e-beam evaporation produce defective materials. In this work, we used CBr4 as a low-damage source of carbon in molecular beam epitaxy of tin-free GeC, with smooth surfaces and narrow x-ray diffraction peaks. Raman spectroscopy showed substitutional incorporation of C and no detectable sp2 bonding from amorphous or graphitic carbon, even without surfactants. Photoluminescence shows strong emission compared with Ge. 
    more » « less
  3. Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20-60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy. 
    more » « less
  4. Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20-60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy. 
    more » « less
  5. Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20−60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy. 
    more » « less