Abstract Embracing local knowledge is vital to conserve and manage biodiversity, yet frameworks to do so are lacking. We need to understand which, and how many knowledge holders are needed to ensure that management recommendations arising from local knowledge are not skewed towards the most vocal individuals. Here, we apply a Wisdom of Crowds framework to a data-poor recreational catch-and-release fishery, where individuals interact with natural resources in different ways. We aimed to test whether estimates of fishing quality from diverse groups (multiple ages and years of experience), were better than estimates provided by homogenous groups and whether thresholds exist for the number of individuals needed to capture estimates. We found that diversity matters; by using random subsampling combined with saturation principles, we determine that targeting 31% of the survey sample size captured 75% of unique responses. Estimates from small diverse subsets of this size outperformed most estimates from homogenous groups; sufficiently diverse small crowds are just as effective as large crowds in estimating ecological state. We advocate for more diverse knowledge holders in local knowledge research and application.
more »
« less
Disrupting and diversifying the values, voices and governance principles that shape biodiversity science and management
With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’.
more »
« less
- PAR ID:
- 10465066
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Royal Society Publishing
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 378
- Issue:
- 1881
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transformative governance is key to addressing the global environmental crisis. We explore how transformative governance of complex biodiversity–climate–society interactions can be achieved, drawing on the first joint report between the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to reflect on the current opportunities, barriers, and challenges for transformative governance. We identify principles for transformative governance under a biodiversity–climate–society nexus frame using four case studies: forest ecosystems, marine ecosystems, urban environments, and the Arctic. The principles are focused on creating conditions to build multifunctional interventions, integration, and innovation across scales; coalitions of support; equitable approaches; and positive social tipping dynamics. We posit that building on such transformative governance principles is not only possible but essential to effectively keep climate change within the desired 1.5 degrees Celsius global mean temperature increase, halt the ongoing accelerated decline of global biodiversity, and promote human well-being.more » « less
-
Introduction Integrated water management (IWM) involves a range of policies, actions, and organizational processes that go beyond traditional hydrology to consider multifaceted aspects of complex water resource systems. Due to its transdisciplinary nature, IWM comprises input from diverse stakeholders, each with unique perceptions, values, and experiences. However, stakeholders from differing backgrounds may disagree on best practices and collective paths forward. As such, successful IWM must address key governance principles (e.g., information flow, collective decision-making, and power relations) across social and institutional scales. Here, we sought to demonstrate how network structure impacts shared decision-making within IWM. Methods We explored a case study in Houston, Texas, USA, where decision-making stakeholders from various sectors and levels of governance engaged in a participatory modeling workshop to improve adoption of nature-based solutions (NBS) through IWM. The stakeholders used fuzzy cognitive mapping (FCM) to define an IWM model comprising multifaceted elements and their interrelationships, which influenced the adoption of NBS in Houston. We applied grounded theory and inductive reasoning to categorize tacit belief schemas regarding how stakeholders viewed themselves within the management system. We then used FCM-based modeling to explore how unique NBS policies would translate into more (or less) NBS adoption. Finally, we calculated specific network metrics (e.g., density, hierarchy, and centrality indices) to better understand the structure of human-water relations embedded within the IWM model. We compared the tacit assumptions about stakeholder roles in IWM against the quantitative degrees of influence and collectivism embedded within the stakeholder-defined model. Results and discussion Our findings revealed a mismatch between stakeholders' external belief statements about IWM and their internal assumptions through cognitive mapping and participatory modeling. The case study network was characterized by a limited degree of internal coordination (low density index), high democratic potential (low hierarchy index), and high-efficiency management opportunities (high centrality index), which transcended across socio-institutional scales. These findings contrasted with several of the belief schemas described by stakeholders during the group workshop. We describe how ongoing partnership with the stakeholders resulted in an opportunity for adaptive learning, where the NBS planning paradigm began to shift toward trans-scale collaboration aimed at high-leverage management opportunities. We emphasize how network analytics allowed us to better understand the extent to which key governance principles drove the behavior of the IWM model, which we leveraged to form deeper stakeholder partnerships by identifying hidden opportunities for governance transformation.more » « less
-
This session will be an introductory conversation to understand the fundamentals of data governance and stewardship. Attendees will be introduced to the core principles of data governance and the role of data stewards. We will talk about strategies for governance and stewardship at your institution, and how to work within roles and frameworks that may already exist at your institution. We’ll also talk about how to build this framework and external considerations you need to consider. Presented at the 2024 Research Analytics Summit in Albuquerque, NMmore » « less
-
Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.more » « less
An official website of the United States government

