skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Series CT Image Super-Resolution by using Transfer Generative Adversarial Network
Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skull and visualize in brain window. The low-resolution images (1/4 of the original spatial size) are simulated by bicubic down-sampling. For training without TL, we train different series individually, and for with TL, we follow the scanning sequence (NCCT, CTP, and CTA) by finetuning. Results The performance of TL-GAN is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) index on 184 NCCT, 882 CTP, and 107 CTA test images. Figure 1 provides both visual (a-c) and quantity (d-f) comparisons. Through TL-GAN, there is a significant improvement with TL than without TL (training from scratch) for NCCT, CTP, and CTA images, respectively. These significances of performance improvement are evaluated by one-tailed paired t-tests (p < 0.05). We enlarge the regions of interest for detail visual comparisons. Further, we evaluate the CTP performance by calculating the perfusion maps, including cerebral blood flow (CBF) and cerebral blood volume (CBV). The visual comparison of the perfusion maps in Figure 2 demonstrate that TL-GAN is beneficial for achieving high diagnostic image quality, which are comparable to the ground truth images for both CBF and CBV maps. Conclusion Utilizing TL-GAN can effectively improve the image resolution for MSCT, provides radiologists more image details for suspicious findings, which is a practical solution for MSCT image quality enhancement.  more » « less
Award ID(s):
1908299
PAR ID:
10189694
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Society for Imaging Informatics in Medicine (SIIM) Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction: Computed tomography perfusion (CTP) imaging requires injection of an intravenous contrast agent and increased exposure to ionizing radiation. This process can be lengthy, costly, and potentially dangerous to patients, especially in emergency settings. We propose MAGIC, a multitask, generative adversarial network-based deep learning model to synthesize an entire CTP series from only a non-contrasted CT (NCCT) input. Materials and Methods: NCCT and CTP series were retrospectively retrieved from 493 patients at UF Health with IRB approval. The data were deidentified and all images were resized to 256x256 pixels. The collected perfusion data were analyzed using the RapidAI CT Perfusion analysis software (iSchemaView, Inc. CA) to generate each CTP map. For each subject, 10 CTP slices were selected. Each slice was paired with one NCCT slice at the same location and two NCCT slices at a predefined vertical offset, resulting in 4.3K CTP images and 12.9K NCCT images used for training. The incorporation of a spatial offset into the NCCT input allows MAGIC to more accurately synthesize cerebral perfusive structures, increasing the quality of the generated images. The studies included a variety of indications, including healthy tissue, mild infarction, and severe infarction. The proposed MAGIC model incorporates a novel multitask architecture, allowing for the simultaneous synthesis of four CTP modalities: mean transit time (MTT), cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP). We propose a novel Physicians-in-the-loop module in the model's architecture, acting as a tunable layer that allows physicians to manually adjust the amount of anatomic detail present in the synthesized CTP series. Additionally, we propose two novel loss terms: multi-modal connectivity loss and extrema loss. The multi-modal connectivity loss leverages the multi-task nature to assert that the mathematical relationship between MTT, CBF, and CBV is satisfied. The extrema loss aids in learning regions of elevated and decreased activity in each modality, allowing for MAGIC to accurately learn the characteristics of diagnostic regions of interest. Corresponding NCCT and CTP slices were paired along the vertical axis. The model was trained for 100 epochs on a NVIDIA TITAN X GPU. Results and Discussion: The MAGIC model’s performance was evaluated on a sample of 40 patients from the UF Health dataset. Across all CTP modalities, MAGIC was able to accurately produce images with high structural agreement between the entire synthesized and clinical perfusion images (SSIMmean=0.801 , UQImean=0.926). MAGIC was able to synthesize CTP images to accurately characterize cerebral circulatory structures and identify regions of infarct tissue, as shown in Figure 1. A blind binary evaluation was conducted to assess the presence of cerebral infarction in both the synthesized and clinical perfusion images, resulting in the synthesized images correctly predicting the presence of cerebral infarction with 87.5% accuracy. Conclusions: We proposed a MAGIC model whose novel deep learning structures and loss terms enable high-quality synthesis of CTP maps and characterization of circulatory structures solely from NCCT images, potentially eliminating the requirement for the injection of an intravenous contrast agent and elevated radiation exposure during perfusion imaging. This makes MAGIC a beneficial tool in a clinical scenario increasing the overall safety, accessibility, and efficiency of cerebral perfusion and facilitating better patient outcomes. Acknowledgements: This work was partially supported by the National Science Foundation, IIS-1908299 III: Small: Modeling Multi-Level Connectivity of Brain Dynamics + REU Supplement, to the University of Florida. 
    more » « less
  2. We present a novel algorithm that is able to generate deep synthetic COVID-19 pneumonia CT scan slices using a very small sample of positive training images in tandem with a larger number of normal images. This generative algorithm produces images of sufficient accuracy to enable a DNN classifier to achieve high classification accuracy using as few as 10 positive training slices (from 10 positive cases), which to the best of our knowledge is one order of magnitude fewer than the next closest published work at the time of writing. Deep learning with extremely small positive training volumes is a very difficult problem and has been an important topic during the COVID-19 pandemic, because for quite some time it was difficult to obtain large volumes of COVID-19-positive images for training. Algorithms that can learn to screen for diseases using few examples are an important area of research. Furthermore, algorithms to produce deep synthetic images with smaller data volumes have the added benefit of reducing the barriers of data sharing between healthcare institutions. We present the cycle-consistent segmentation-generative adversarial network (CCS-GAN). CCS-GAN combines style transfer with pulmonary segmentation and relevant transfer learning from negative images in order to create a larger volume of synthetic positive images for the purposes of improving diagnostic classification performance. The performance of a VGG-19 classifier plus CCS-GAN was trained using a small sample of positive image slices ranging from at most 50 down to as few as 10 COVID-19-positive CT scan images. CCS-GAN achieves high accuracy with few positive images and thereby greatly reduces the barrier of acquiring large training volumes in order to train a diagnostic classifier for COVID-19. 
    more » « less
  3. IVC filters (IVCF) perform an important function in select patients that have venous blood clots. However, they are usually intended to be temporary, and significant delay in removal can have negative health consequences for the patient. Currently, all Interventional Radiology (IR) practices are tasked with tracking patients in whom IVCF are placed. Due to their small size and location deep within the abdomen it is common for patients to forget that they have an IVCF. Therefore, there is a significant delay for a new healthcare provider to become aware of the presence of a filter. Patients may have an abdominopelvic CT scan for many reasons and, fortunately, IVCF are clearly visible on these scans. In this research a deep learning model capable of segmenting IVCF from CT scan slices along the axial plane is developed. The model achieved a Dice score of 0.82 for training over 372 CT scan slices. The segmentation model is then integrated with a prediction algorithm capable of flagging an entire CT scan as having IVCF. The prediction algorithm utilizing the segmentation model achieved a 92.22% accuracy at detecting IVCF in the scans. 
    more » « less
  4. Faggioli, G; Ferro, N; Galuščáková, P; Herrera, A (Ed.)
    In the ever-changing realm of medical image processing, ImageCLEF brought a newdimension with the Identifying GAN Fingerprint task, catering to the advancement of visual media analysis. This year, the author presented the task of detecting training image fingerprints to control the quality of synthetic images for the second time (as task 1) and introduced the task of detecting generative model fingerprints for the first time (as task 2). Both tasks are aimed at discerning these fingerprints from images, on both real training images and the generative models. The dataset utilized encompassed 3D CT images of lung tuberculosis patients, with the development dataset featuring a mix of real and generated images, and the test dataset. Our team ’CSMorgan’ contributed several approaches, leveraging multiformer (combined feature extracted using BLIP2 and DINOv2) networks, additive and mode thresholding techniques, and late fusion methodologies, bolstered by morphological operations. In Task 1, our optimal performance was attained through a late fusion-based reranking strategy, achieving an F1 score of 0.51, while the additive average thresholding approach closely followed with a score of 0.504. In Task 2, our multiformer model garnered an impressive Adjusted Rand Index (ARI) score of 0.90, and a fine-tuned variant of the multiformer yielded a score of 0.8137. These outcomes underscore the efficacy of the multiformer-based approach in accurately discerning both real image and generative model fingerprints. 
    more » « less
  5. A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration. 
    more » « less