Graph-guided learning has well-documented impact in a gamut of network science applications. A prototypical graph-guided learning task deals with semi-supervised learning over graphs, where the goal is to predict the nodal values or labels of unobserved nodes, by leveraging a few nodal observations along with the underlying graph structure. This is particularly challenging under privacy constraints or generally when acquiring nodal observations incurs high cost. In this context, the present work puts forth a Bayesian graph-driven self-supervised learning (Self-SL) approach that: (i) learns powerful nodal embeddings emanating from easier to solve auxiliary tasks that map local to global connectivity information; and, (ii) adopts an ensemble of Gaussian processes (EGPs) with adaptive weights as nodal embeddings are processed online. Unlike most existing deterministic approaches, the novel approach offers accurate estimates of the unobserved nodal values along with uncertainty quantification that is important especially in safety critical applications. Numerical tests on synthetic and real graph datasets showcase merits of the novel EGP-based Self-SL method. 
                        more » 
                        « less   
                    
                            
                            Self-Recover: Forecasting Block Maxima in Time Series from Predictors with Disparate Temporal Coverage Using Self-Supervised Learning
                        
                    
    
            Forecasting the block maxima of a future time window is a challenging task due to the difficulty in inferring the tail distribution of a target variable. As the historical observations alone may not be sufficient to train robust models to predict the block maxima, domain-driven process models are often available in many scientific domains to supplement the observation data and improve the forecast accuracy. Unfortunately, coupling the historical observations with process model outputs is a challenge due to their disparate temporal coverage. This paper presents Self-Recover, a deep learning framework to predict the block maxima of a time window by employing self-supervised learning to address the varying temporal data coverage problem. Specifically Self-Recover uses a combination of contrastive and generative self-supervised learning schemes along with a denoising autoencoder to impute the missing values. The framework also combines representations of the historical observations with process model outputs via a residual learning approach and learns the generalized extreme value (GEV) distribution characterizing the block maxima values. This enables the framework to reliably estimate the block maxima of each time window along with its confidence interval. Extensive experiments on real-world datasets demonstrate the superiority of Self-Recover compared to other state-of-the-art forecasting methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2006633
- PAR ID:
- 10465182
- Date Published:
- Journal Name:
- Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI 2023)
- Page Range / eLocation ID:
- 3723 to 3731
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Accurate forecasting of extreme values in time series is critical due to the significant impact of extreme events on human and natural systems. This paper presents DeepExtrema, a novel framework that combines a deep neural network (DNN) with generalized extreme value (GEV) distribution to forecast the block maximum value of a time series. Implementing such a network is a challenge as the framework must preserve the inter-dependent constraints among the GEV model parameters even when the DNN is initialized. We describe our approach to address this challenge and present an architecture that enables both conditional mean and quantile prediction of the block maxima. The extensive experiments performed on both real-world and synthetic data demonstrated the superiority of DeepExtrema compared to other baseline methods.more » « less
- 
            null (Ed.)Recently 3D scene understanding attracts attention for many applications, however, annotating a vast amount of 3D data for training is usually expensive and time consuming. To alleviate the needs of ground truth, we propose a self-supervised schema to learn 4D spatio-temporal features (i.e. 3 spatial dimensions plus 1 temporal dimension) from dynamic point cloud data by predicting the temporal order of sampled and shuffled point cloud clips. 3D sequential point cloud contains precious geometric and depth information to better recognize activities in 3D space compared to videos. To learn the 4D spatio-temporal features, we introduce 4D convolution neural networks to predict the temporal order on a self-created large scale dataset, NTU- PCLs, derived from the NTU-RGB+D dataset. The efficacy of the learned 4D spatio-temporal features is verified on two tasks: 1) Self-supervised 3D nearest neighbor retrieval; and 2) Self-supervised representation learning transferred for action recognition on smaller 3D dataset. Our extensive experiments prove the effectiveness of the proposed self-supervised learning method which achieves comparable results w.r.t. the fully-supervised methods on action recognition on MSRAction3D dataset.more » « less
- 
            Solar energy is now the cheapest form of electricity in history. Unfortunately, significantly increasing the electric grid's fraction of solar energy remains challenging due to its variability, which makes balancing electricity's supply and demand more difficult. While thermal generators' ramp rate---the maximum rate at which they can change their energy generation---is finite, solar energy's ramp rate is essentially infinite. Thus, accurate near-term solar forecasting, or nowcasting, is important to provide advance warnings to adjust thermal generator output in response to variations in solar generation to ensure a balanced supply and demand. To address the problem, this paper develops a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning. Specifically, we develop deep auto-regressive models using convolutional neural networks (CNN) and long short-term memory networks (LSTM) that are globally trained across multiple locations to predict raw future observations of the spatio-temporal spectral data collected by the recently launched GOES-R series of satellites. Our model estimates a location's near-term future solar irradiance based on satellite observations, which we feed to a regression model trained on smaller site-specific solar data to provide near-term solar photovoltaic (PV) forecasts that account for site-specific characteristics. We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites and show that it yields errors close to that of a model using ground-truth observations.more » « less
- 
            Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    