Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ∼ 1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.
more »
« less
Modeling mixing kinetics for large-scale production of Ultra-High-Performance Concrete: effects of temperature, volume, and mixing method
- Award ID(s):
- 2046407
- PAR ID:
- 10465216
- Date Published:
- Journal Name:
- Construction and Building Materials
- Volume:
- 397
- Issue:
- C
- ISSN:
- 0950-0618
- Page Range / eLocation ID:
- 132439
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ~1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.more » « less
-
This upload contains files supporting the paper;Experimental and computational investigation of mixing dynamics in millifluidic jet mixing reactors; Overview. Symmetric Paper Result workbook contains the computational results utilized for plots in the paper. Excel sheet tabs in the workbook have been organized based on Figure # in the submitted manuscript JMR-0.25-1.0mm and JMR-0.5-1.0mm contains the files for determining the computational mixing time calculations for each reactor. Software. COMSOL Multiphysicsmore » « less
-
We introduce an effective field theory to study mixing of two fields induced by their couplings to a common decay channel in a medium. The extension of the method of Lee, Oehme, and Yang, the cornerstone of analysis of violation in flavored mesons, to include the mixing of particles with different masses provides a guide to and benchmark for the effective field theory. The analysis reveals subtle caveats in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian, more acute in the nondegenerate case. The effective field theory describes the dynamics of field mixing where the common intermediate states populate a bath in thermal equilibrium, as an . We obtain the effective action up to second order in the couplings, where indirect mixing is a consequence of off-diagonal self-energy components. We find that if only one of the mixing fields features an initial expectation value, indirect mixing induces an expectation value of the other field. The equal time two point correlation functions exhibit an asymptotic approach to a stationary thermal state, and the emergence of long-lived coherence which displays quantum beats as a consequence of interference of quasinormal modes in the medium. The amplitudes of the quantum beats are resonantly enhanced in the nearly degenerate case with potential observational consequences.more » « less
An official website of the United States government

