Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ~1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.
more »
« less
This content will become publicly available on July 15, 2026
Experimental and computational investigation of mixing dynamics in millifluidic jet mixing reactors
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ∼ 1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.
more »
« less
- Award ID(s):
- 2226740
- PAR ID:
- 10642770
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- Chemical engineering journal
- Volume:
- 516
- ISSN:
- 0375-8699
- Page Range / eLocation ID:
- 164078
- Subject(s) / Keyword(s):
- Mixing dynamics Villermaux-Dushman COMSOL Millifluidic Nano-manufacturing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a study on the effectiveness of two turbulence models, the large eddy simulation (LES) model and the k-ε turbulence model, in predicting mixing time within a ladle furnace using the computational fluid dynamics (CFD) technique. The CFD model was developed based on a downscaled water ladle from an industrial ladle. Corresponding experiments were conducted to provide insights into the flow field, which were used for the validation of CFD simulations. The correlation between the flow structure and turbulence kinetic energy in relation to mixing time was investigated. Flow field results indicated that both turbulence models aligned well with time-averaged velocity data from the experiments. However, the LES model not only offered a closer match in magnitude but also provided a more detailed representation of turbulence eddies. With respect to predicting mixing time, increased flow rates resulted in extended mixing times in both turbulence models. However, the LES model consistently projected longer mixing times due to its capability to capture a more intricate distribution of turbulence eddies.more » « less
-
Abstract To efficiently design new adsorption systems, industrial scale fixed beds are often scaled down to bench‐top experiments and/or modeled using computational fluid dynamics (CFD). While there has been considerable work exploring adsorption of volatile organics onto activated carbon fixed beds in the literature, this article attempts to reckon with the high variability of adsorption capacities observed at small scales and improve small‐scale experiments for industrial scale reactor design. This study integrates experimental results with CFD simulations, which can explicitly model system heterogeneities and their influence on adsorption by resolving local packing densities and flow paths. Activated carbon physical properties were determined through surface area analysis, proximate analysis, and toluene adsorption (measured via mass spectroscopy). Variability in the small‐scale systems was not attributed to surface area or carbon content, as is often stated, but instead was due to local packing density variations and the heterogeneity of particle size distributions.more » « less
-
null (Ed.)To help better interpret experimental measurement of nanoparticle size, it is important to understand how their diffusion depends on the physical and chemical features of surface ligands. In this study, explicit solvent molecular dynamics simulations are used to probe the effect of ligand charge and flexibility on the diffusion of small gold nanoparticles. The results suggest that despite a high bare charge (+18 e), cationic nanoparticles studied here have reduced diffusion constants compared to a hydrophobic gold nanoparticle by merely a modest amount. Increasing the ligand length by 10 CH2 units also has a limited impact on the diffusion constant. For the three particles studied here, the difference between estimated hydrodynamic radius and radius of gyration is on the order of one solvent layer (3–5 Å), confirming that the significant discrepancies found in the size of similar nanoparticles by recent transmission electron microscopy and dynamic light scattering measurements were due to aggregation under solution conditions. The limited impact of electrostatic friction on the diffusion of highly charged nanoparticles is found to be due to the strong anticorrelation between electrostatic and van der Waals forces between nanoparticle and environment, supporting the generality of recent observation for proteins by Matyushov and co-workers. Including the first shell of solvent molecules as part of the diffusing particle has a minor impact on the total force autocorrelation function but reduces the disparity in relaxation time between the total force and its electrostatic and van der Waals components.more » « less
-
Background: Magnetic nanoparticles are attracting much attention toward easyoperation and size controllable synthesis methods. We develop a method to synthesize MnO, Co,CoO, and Ni nanoparticles by thermal decomposition of metal 2,4-pentanedionates in the presenceof oleylamine (OLA), oleic acid (OA), and 1-octadecene (ODE). Methods: Similar experimental conditions are used to prepare nanoparticles except for the metalstarting materials (manganese 2,4-pentanedionate, nickel 2,4-pentanedionate, and cobalt 2,4-pentanedionate), leading to different products. For the manganese 2,4-pentanedionate startingmaterial, MnO nanoparticles are always obtained as the reaction is controlled with differenttemperatures, precursor concentrations, ligand ratios, and reaction time. For the cobalt 2,4-pentanedionate starting material, only three experimental conditions can produce pure phase CoOand Co nanoparticles. For the nickel 2,4-pentanedionate starting material, only three experimentalconditions lead to the production of pure phase Ni nanoparticles. Results: The nanoparticle sizes increase with the increase of reaction temperatures. It is observedthat the reaction time affects nanoparticle growth. The nanoparticles are studied by XRD, TEM,and magnetic measurements. Conclusion: This work presents a facile method to prepare nanoparticles with different sizes,which provides a fundamental understanding of nanoparticle growth in solution.more » « less
An official website of the United States government
