skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Standardizing cassette‐based deep mutagenesis by Golden Gate assembly
Abstract Protocols for the construction of large, deeply mutagenized protein encoding libraries via Golden Gate assembly of synthetic DNA cassettes employ disparate, system‐specific methodology. Here we present a standardized Golden Gate method for building user‐defined libraries. We demonstrate that a 25 μL reaction, using 40 fmol of input DNA, can generate a library on the order of 1 × 106members and that reaction volume or input DNA concentration can be scaled up with no losses in transformation efficiency. Such libraries can be constructed from dsDNA cassettes generated either by degenerate oligonucleotides or oligo pools. We demonstrate its real‐world effectiveness by building custom, user‐defined libraries on the order of 104–107unique protein encoding variants for two orthogonal protein engineering systems. We include a detailed protocol and provide several general‐use destination vectors.  more » « less
Award ID(s):
2030221
PAR ID:
10465325
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
121
Issue:
1
ISSN:
0006-3592
Format(s):
Medium: X Size: p. 281-290
Size(s):
p. 281-290
Sponsoring Org:
National Science Foundation
More Like this
  1. CRISPR-associated transposons (CASTs) are RNA-guided mobile genetic elements that are widespread in bacterial genomes. Here, we describe the UltraCAST, a suicide vector with the Vibrio cholerae Type I-F CAST system and Golden Gate assembly sites with fluorescent protein gene dropouts for guide RNA and a mini-transposon cargo cloning. We show an example of UltraCAST genome editing by disrupting a gene in the chromosome of Serratia symbiotica CWBI-2.3T, a culturable relative of aphid endosymbionts. The UltraCAST can be used to flexibly insert DNA into specific genomic sites and facilitates testing this genome editing platform in non-model bacterial species that lack genetic tools. 
    more » « less
  2. Abstract With increasing complexity of expression studies and the repertoire of characterized sequences, combinatorial cloning has become a common necessity. Techniques like BioBricks and Golden Gate aim to standardize and speed up the process of cloning large constructs while enabling sharing of resources. The BioBricks format provides a simplified and flexible approach to endless assembly with a compact library and useful intermediates but is a slow process, joining only two parts in a cycle. Golden Gate improves upon the speed with use of Type IIS enzymes and joins several parts in a cycle but requires a larger library of parts and logistical inefficiencies scale up significantly in the multigene format. We present here a method that provides improvement over these techniques by combining their features. By using Type IIS enzymes in a format like BioBricks, we have enabled a faster and efficient assembly with reduced scarring, which performs at a similarly fast pace as Golden Gate, but significantly reduces library size and user input. Additionally, this method enables faster assembly of operon-style constructs, a feature requiring extensive workaround in Golden Gate. Our format allows such inclusions resulting in faster and more efficient assembly. 
    more » « less
  3. Summary DNA assembly systems based on the Golden Gate method are popular in synthetic biology but have several limitations: small insert size, incompatibility with other cloning platforms, DNA domestication requirement, generation of fusion scars, and lack of post‐assembly modification. To address these obstacles, we present the DASH assembly toolset, which combines features of Golden Gate‐based cloning, recombineering, and site‐specific recombinase systems. We developed (1) a set of donor vectors based on the GoldenBraid platform, (2) an acceptor vector derived from the plant transformation‐competent artificial chromosome (TAC) vector, pYLTAC17, and (3) a re‐engineered recombineering‐readyE. colistrain, CZ105, based on SW105. The initial assembly steps are carried out using the donor vectors following standard GoldenBraid assembly procedures. Importantly, existing parts and transcriptional units created using compatible Golden Gate‐based systems can be transferred to the DASH donor vectors using standard single‐tube restriction/ligation reactions. The cargo DNA from a DASH donor vector is then efficiently transferredin vivoinE. coliinto the acceptor vector by the sequential action of a rhamnose‐inducible phage‐derived PhiC31 integrase and arabinose‐inducible yeast‐derived Flippase (FLP) recombinase using CZ105. Furthermore, recombineering‐based post‐assembly modification, including the removal of undesirable scars, is greatly simplified. To demonstrate the utility of the DASH system, a 116 kilobase (kb) DNA construct harbouring a 97 kb cargo consisting of 35 transcriptional units was generated. One of the coding DNA sequences (CDSs) in the final assembly was replaced through recombineering, and thein plantafunctionality of the entire construct was tested in both transient and stable transformants. 
    more » « less
  4. Abstract DNA‐based computers can potentially analyze complex sets of biological markers, thereby advancing diagnostics and the treatment of diseases. Despite extensive efforts, DNA processors have not yet been developed due, in part, to limitations in the ability to integrate available logic gates into circuits. We have designed a NAND gate, which is one of the functionally complete set of logic connectives. The gate's design avoids stem‐loop‐folded DNA fragments, and is capable of reusable operations in RNase H‐containing buffer. The output of the gate can be translated into RNA‐cleaving activity or a fluorescent signal produced either by a deoxyribozyme or a molecular beacon probe. Furthermore, three NAND‐gate‐forming DNA strands were crosslinked by click chemistry and purified in a simple procedure that allowed ≈1013gates to be manufactured in 16 h, with a hands‐on time of about 30 min. Two NAND gates can be joined into one association that performs a new logic function simply by adding a DNA linker strand. Approaches developed in this work could contribute to the development of biocompatible DNA logic circuits for biotechnological and medical applications. 
    more » « less
  5. null (Ed.)
    Protein sequence space is vast; nature uses only an infinitesimal fraction of possible sequences to sustain life. Are there solutions to biological problems other than those provided by nature? Can we create artificial proteins that sustain life? To investigate these questions, we have created combinatorial collections, or libraries, of novel sequences with no homology to those found in living organisms. Previously designed libraries contained numerous functional proteins. However, they often formed dynamic, rather than well-ordered structures, which complicated structural and mechanistic characterization. To address this challenge, we describe the development of new libraries based on the de novo protein S-824, a 4-helix bundle with a very stable 3-dimensional structure. Distinct from previous libraries, we targeted variability to a specific region of the protein, seeking to create potential functional sites. By characterizing variant proteins from this library, we demonstrate that the S-824 scaffold tolerates diverse amino acid substitutions in a putative cavity, including buried polar residues suitable for catalysis. We designed and created a DNA library encoding 1.7 × 106 unique protein sequences. This new library of stable de novo α-helical proteins is well suited for screens and selections for a range of functional activities in vitro and in vivo. 
    more » « less