Problem definition : Participants in matching markets face search and screening costs when seeking a match. We study how platform design can reduce the effort required to find a suitable partner. Practical/academic relevance : The success of matching platforms requires designs that minimize search effort and facilitate efficient market clearing. Methodology : We study a game-theoretic model in which “applicants” and “employers” pay costs to search and screen. An important feature of our model is that both sides may waste effort: Some applications are never screened, and employers screen applicants who may have already matched. We prove existence and uniqueness of equilibrium and characterize welfare for participants on both sides of the market. Results : We identify that the market operates in one of two regimes: It is either screening-limited or application-limited. In screening-limited markets, employer welfare is low, and some employers choose not to participate. This occurs when application costs are low and there are enough employers that most applicants match, implying that many screened applicants are unavailable. In application-limited markets, applicants face a “tragedy of the commons” and send many applications that are never read. The resulting inefficiency is worst when there is a shortage of employers. We show that simple interventions—such as limiting the number of applications that an individual can send, making it more costly to apply, or setting an appropriate market-wide wage—can significantly improve the welfare of agents on one or both sides of the market. Managerial implications : Our results suggest that platforms cannot focus exclusively on attracting participants and making it easy to contact potential match partners. A good user experience requires that participants not waste effort considering possibilities that are unlikely to be available. The operational interventions we study alleviate congestion by ensuring that potential match partners are likely to be available.
more »
« less
Search Frictions and Efficiency in Decentralized Transport Markets
Abstract We explore efficiency and optimal policy in decentralized transport markets, such as taxis, trucks, and bulk shipping. We show that in these markets, search frictions distort the transportation network and the dynamic allocation of carriers over space. We derive explicit and intuitive conditions for efficiency and show how they translate into efficient pricing rules, or optimal taxes and subsidies for the planner who cannot set prices directly. The results imply that destination-based pricing is essential to attain efficiency. Then, using data from dry bulk shipping, we demonstrate that search frictions lead to a sizable social loss and substantial misallocation of ships over space. Optimal policy can eliminate about half of the welfare loss. Can a centralizing platform, often arising as a market-based solution to search frictions, do better? Interestingly, the answer is no; although the platform eradicates frictions, it exerts market power, thus eroding the welfare gains. Finally, we use two recent interventions in the industry (China’s Belt and Road Initiative and the environmental initiative IMO 2020) to demonstrate that taking into account the efficiency properties of transport markets is germane to any proposed policy.
more »
« less
- Award ID(s):
- 1847555
- PAR ID:
- 10465332
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Quarterly Journal of Economics
- Volume:
- 138
- Issue:
- 4
- ISSN:
- 0033-5533
- Format(s):
- Medium: X Size: p. 2451-2503
- Size(s):
- p. 2451-2503
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Our proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters.more » « less
-
Motivated by applications from gig economy and online marketplaces, we study a two-sided queueing system under joint pricing and matching controls. The queueing system is modeled by a bipartite graph, where the vertices represent customer or server types and the edges represent compatible customer-server pairs. We propose a threshold-based two-price policy and queue length-based maximum-weight matching policy and show that it achieves a near-optimal profit. We study the system under the large-scale regime, wherein the arrival rates are scaled up, and under the large-market regime, wherein both the arrival rates and numbers of customer and server types increase. We show that two-price policy is a primary driver for optimality in the large-scale regime. We demonstrate the advantage of maximum-weight matching with respect to the number of customer and server types. Concurrently, we show that the interplay of pricing and matching is crucial for optimality in the large-market regime.more » « less
-
Increased availability of high-quality customer information has fueled interest in personalized pricing strategies, that is, strategies that predict an individual customer’s valuation for a product and then offer a price tailored to that customer. Although the appeal of personalized pricing is clear, it may also incur large costs in the forms of market research, investment in information technology and analytics expertise, and branding risks. In light of these trade-offs, our work studies the value of personalized pricing strategies over a simple single-price strategy. We first provide closed-form lower and upper bounds on the ratio between the profits of an idealized personalized pricing strategy (first-degree price discrimination) and a single-price strategy. Our bounds depend on simple statistics of the valuation distribution and shed light on the types of markets for which personalized pricing has little or significant potential value. Second, we consider a feature-based pricing model where customer valuations can be estimated from observed features. We show how to transform our aforementioned bounds into lower and upper bounds on the value of feature-based pricing over single pricing depending on the degree to which the features are informative for the valuation. Finally, we demonstrate how to obtain sharper bounds by incorporating additional information about the valuation distribution (moments or shape constraints) by solving tractable linear optimization problems. This paper was accepted by David Simchi-Levi, revenue management and market analytics.more » « less
-
Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders.more » « less
An official website of the United States government
