skip to main content

Title: Dynamic Pricing and Matching for Two-Sided Queues
Motivated by applications from gig economy and online marketplaces, we study a two-sided queueing system under joint pricing and matching controls. The queueing system is modeled by a bipartite graph, where the vertices represent customer or server types and the edges represent compatible customer-server pairs. We propose a threshold-based two-price policy and queue length-based maximum-weight matching policy and show that it achieves a near-optimal profit. We study the system under the large-scale regime, wherein the arrival rates are scaled up, and under the large-market regime, wherein both the arrival rates and numbers of customer and server types increase. We show that two-price policy is a primary driver for optimality in the large-scale regime. We demonstrate the advantage of maximum-weight matching with respect to the number of customer and server types. Concurrently, we show that the interplay of pricing and matching is crucial for optimality in the large-market regime.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Operations Research
Page Range / eLocation ID:
83 to 100
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Problem definition: We study scheduling multi-class impatient customers in parallel server queueing systems. At the time of arrival, customers are identified as being one of many classes, and the class represents the service and patience time distributions as well as cost characteristics. From the system’s perspective, customers of the same class at time of arrival get differentiated on their residual patience time as they wait in queue. We leverage this property and propose two novel and easy-to-implement multi-class scheduling policies. Academic/practical relevance: Scheduling multi-class impatient customers is an important and challenging topic, especially when customers’ patience times are nonexponential. In these contexts, even for customers of the same class, processing them under the first-come, first-served (FCFS) policy is suboptimal. This is because, at time of arrival, the system only knows the overall patience distribution from which a customer’s patience value is drawn, and as time elapses, the estimate of the customer’s residual patience time can be further updated. For nonexponential patience distributions, such an update indeed reveals additional information, and using this information to implement within-class prioritization can lead to additional benefits relative to the FCFS policy. Methodology: We use fluid approximations to analyze the multi-class scheduling problem with ideas borrowed from convex optimization. These approximations are known to perform well for large systems, and we use simulations to validate our proposed policies for small systems. Results: We propose a multi-class time-in-queue policy that prioritizes both across customer classes and within each class using a simple rule and further show that most of the gains of such a policy can be achieved by deviating from within-class FCFS for at most one customer class. In addition, for systems with exponential patience times, our policy reduces to a simple priority-based policy, which we prove is asymptotically optimal for Markovian systems with an optimality gap that does not grow with system scale. Managerial implications: Our work provides managers ways of improving quality of service to manage parallel server queueing systems. We propose easy-to-implement policies that perform well relative to reasonable benchmarks. Our work also adds to the academic literature on multi-class queueing systems by demonstrating the joint benefits of cross- and within-class prioritization.

    Funding: A. Bassamboo received financial support from the National Science Foundation [Grant CMMI 2006350]. C. (A.) Wu received financial support from the Hong Kong General Research Fund [Early Career Scheme, Project 26206419].

    Supplemental Material: The online appendix is available at .

    more » « less
  2. We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delay-sensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelation-principle style argument, we find that it suffices to consider signaling mechanisms where the service provider sends a binary signal of "join" or "leave", and under which the equilibrium strategy of a customer is to follow the service provider's recommended action. (2) Optimality of threshold policies: For a given fixed price for service, we use the structural characterization to show that the optimal signaling mechanism can be obtained as a solution to a linear program with a countable number of variables and constraints. Under some mild technical conditions on the waiting costs, we establish that there exists an optimal signaling mechanism with a threshold structure, where service provider sends the "join" signal if the queue length is below a threshold, and "leave" otherwise. (In addition, at the threshold, the service provider randomizes.) For the special case of linear waiting costs, we derive an analytical expression for the optimal threshold i terms of the two branches of the Lambert-W function. (3) Revenue comparison: Finally, we show that with the optimal choice of the fixed price and using the corresponding optimal signaling mechanism, the service provider can achieve the same revenue as with the optimal state-dependent pricing mechanism in a fully-observable queue. This implies that in settings where state-dependent pricing is not feasible, the service provider can effectively use optimal signaling (with the optimal fixed price) to achieve the same revenue. 
    more » « less
  3. We study the problem of maximizing payoff generated over a period of time in a general class of closed queueing networks with a finite, fixed number of supply units that circulate in the system. Demand arrives stochastically, and serving a demand unit (customer) causes a supply unit to relocate from the “origin” to the “destination” of the customer. The key challenge is to manage the distribution of supply in the network. We consider general controls including customer entry control, pricing, and assignment. Motivating applications include shared transportation platforms and scrip systems. Inspired by the mirror descent algorithm for optimization and the backpressure policy for network control, we introduce a rich family of mirror backpressure (MBP) control policies. The MBP policies are simple and practical and crucially do not need any statistical knowledge of the demand (customer) arrival rates (these rates are permitted to vary in time). Under mild conditions, we propose MBP policies that are provably near optimal. Specifically, our policies lose at most [Formula: see text] payoff per customer relative to the optimal policy that knows the demand arrival rates, where K is the number of supply units, T is the total number of customers over the time horizon, and η is the demand process’ average rate of change per customer arrival. An adaptation of MBP is found to perform well in numerical experiments based on data from NYC Cab.

    This paper was accepted by Gabriel Weintraub, revenue management and market analytics.

    Funding: Y. Kanoria was supported by the National Science Foundation’s Division of Civil, Mechanical, and Manufacturing Innovation [Grant CMMI-1653477].

    Supplemental Material: The data files and online appendices are available at .

    more » « less
  4. Queueing models that are used to capture various service settings typically assume that customers require a single unit of resource (server) to be processed. However, there are many service settings where such an assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose a multiserver queueing model with multiple customer classes in which customers from different classes may require different amounts of resources to be served. We study the optimal scheduling policy for such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness, we develop an index-based policy that we refer to as the idle-avoid [Formula: see text] rule. For a two-class two-server model, where policy-induced idleness can have a big impact on system performance, we characterize cases where the idle-avoid [Formula: see text] rule is optimal. In other cases, we establish a uniform performance bound on the amount of suboptimality incurred by the idle-avoid [Formula: see text] rule. For general multiclass multiserver queues, we establish the asymptotic optimality of the idle-avoid [Formula: see text] rule in the many-server regime. For long-time horizons, we show that the idle-avoid [Formula: see text] is throughput optimal. Our theoretical results, along with numerical experiments, provide support for the good and robust performance of the proposed policy. 
    more » « less
  5. We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Our proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters. 
    more » « less