Abstract Adhesive tissue engineering scaffolds (ATESs) have emerged as an innovative alternative means, replacing sutures and bioglues, to secure the implants onto target tissues. Relying on their intrinsic tissue adhesion characteristics, ATES systems enable minimally invasive delivery of various scaffolds. This study investigates development of the first class of 3D bioprinted ATES constructs using functionalized hydrogel bioinks. Two ATES delivery strategies, in situ printing onto the adherend versus printing and then transferring to the target surface, are tested using two bioprinting methods, embedded versus air printing. Dopamine‐modified methacrylated hyaluronic acid (HAMA‐Dopa) and gelatin methacrylate (GelMA) are used as the main bioink components, enabling fabrication of scaffolds with enhanced adhesion and crosslinking properties. Results demonstrate that dopamine modification improved adhesive properties of the HAMA‐Dopa/GelMA constructs under various loading conditions, while maintaining their structural fidelity, stability, mechanical properties, and biocompatibility. While directly printing onto the adherend yields superior adhesive strength, embedded printing followed by transfer to the target tissue demonstrates greater potential for translational applications. Together, these results demonstrate the potential of bioprinted ATESs as off‐the‐shelf medical devices for diverse biomedical applications.
more »
« less
Leveraging 3D Bioprinting and Photon‐Counting Computed Tomography to Enable Noninvasive Quantitative Tracking of Multifunctional Tissue Engineered Constructs
Abstract 3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon‐counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom‐engineer scaffolds with traceability. Multiple CT‐visible hydrogel‐based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine‐loaded liposome, gold, methacrylated gold (AuMA), and Gd2O3) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2O3NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.
more »
« less
- PAR ID:
- 10465347
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Healthcare Materials
- Volume:
- 12
- Issue:
- 31
- ISSN:
- 2192-2640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Over the past decade, three-dimensional (3D) bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regardingin vitroculturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes. This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A thorough discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas such as bioprinting in microgravity and the integration of artificial intelligence. The study concludes with a discussion on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation.more » « less
-
Abstract IntroductionCoaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection. MethodsPhospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression. ResultsCoaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments. ConclusionsOur results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine.more » « less
-
Abstract Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.more » « less
-
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.more » « less
An official website of the United States government
