Abstract. Acidity, defined as pH, is a central component of aqueouschemistry. In the atmosphere, the acidity of condensed phases (aerosolparticles, cloud water, and fog droplets) governs the phase partitioning ofsemivolatile gases such as HNO3, NH3, HCl, and organic acids andbases as well as chemical reaction rates. It has implications for theatmospheric lifetime of pollutants, deposition, and human health. Despiteits fundamental role in atmospheric processes, only recently has this fieldseen a growth in the number of studies on particle acidity. Even with thisgrowth, many fine-particle pH estimates must be based on thermodynamic modelcalculations since no operational techniques exist for direct measurements.Current information indicates acidic fine particles are ubiquitous, butobservationally constrained pH estimates are limited in spatial and temporalcoverage. Clouds and fogs are also generally acidic, but to a lesser degreethan particles, and have a range of pH that is quite sensitive toanthropogenic emissions of sulfur and nitrogen oxides, as well as ambientammonia. Historical measurements indicate that cloud and fog droplet pH haschanged in recent decades in response to controls on anthropogenicemissions, while the limited trend data for aerosol particles indicateacidity may be relatively constant due to the semivolatile nature of thekey acids and bases and buffering in particles. This paper reviews andsynthesizes the current state of knowledge on the acidity of atmosphericcondensed phases, specifically particles and cloud droplets. It includesrecommendations for estimating acidity and pH, standard nomenclature, asynthesis of current pH estimates based on observations, and new modelcalculations on the local and global scale.
more »
« less
Direct measurement of the pH of aerosol particles using carbon quantum dots
The pH of aerosol particles remains challenging to measure because of their small size, complex composition, and high acidity. Acidity in aqueous aerosol particles, which are found abundantly in the atmosphere, impacts many chemical processes from reaction rates to cloud formation. Only one technique – pH paper – currently exists for directly determining the pH of aerosol particles, and this is restricted to measuring average acidity for entire particle populations. Other methods for evaluating aerosol pH include filter samples, particle-into-liquid sampling, Raman spectroscopy, organic dyes, and thermodynamic models, but these either operate in a higher pH range or are unable to assess certain chemical species or complexity. Here, we present a new method for determining acidity of individual particles and particle phases using carbon quantum dots as a novel in situ fluorophore. Carbon quantum dots are easily synthesized, shelf stable, and sensitive to pH in the highly acidic regime from pH 0 to pH 3 relevant to ambient aerosol particles. To establish the method, a calibration curve was formed from the ratiometric fluorescence intensity of aerosolized standard solutions with a correlation coefficient ( R 2 ) of 0.99. Additionally, the pH of aerosol particles containing a complex organic mixture (COM) representative of environmental aerosols was also determined, proving the efficacy of using carbon quantum dots as pH-sensitive fluorophores for complex systems. The ability to directly measure aerosol particle and phase acidity in the correct pH range can help parametrize atmospheric models and improve projections for other aerosol properties and their influence on health and climate.
more »
« less
- PAR ID:
- 10465383
- Date Published:
- Journal Name:
- Analytical Methods
- Volume:
- 14
- Issue:
- 30
- ISSN:
- 1759-9660
- Page Range / eLocation ID:
- 2929 to 2936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Secondary organic aerosol (SOA) is key to our climate, affecting Earth’s radiative balance both indirectly and directly. Understanding the chemical composition and properties of SOA are crucial to accurately predict their concentrations and ultimately their impact on climate in models. Multiphase chemical reactions in the atmosphere have been found to form a variety of low-volatility, high-molecular-weight species, or oligomers. Although oligomers may constitute a large portion of SOA, they are not well understood. Most analytical techniques are unable to detect such high-mass organic species, so their formation and degradation mechanisms are still in need of investigation. Herein, we present a method using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to determine the oligomeric content of aerosol particles. We apply the method to analyze SOA particles formed from reactive uptake of IEPOX onto acidic ammonium sulfate seed particles during atmospheric chamber experiments. We compare the oligomeric content of the particles based on key properties, including particle acidity and exposure to oxidants. We compared multiple sample collection methods, including impaction into deionized water using a Liquid Spot Sampler (Aerosol Devices) and direct impaction onto a sampling plate. Our work will provide insight about the formation ofmore » « less
-
Abstract We recently demonstrated that the heterogeneous hydroxyl radical (·OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with ·OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous ·OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous ·OH oxidation of IEPOX-SOA particles. Gas-phase IEPOX was reacted with inorganic sulfate particles of varying pH (0.5 to 2.0) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were then aged at a relative humidity of 60% in an oxidation flow reactor (OFR) for 0-15 days of equivalent atmospheric ·OH exposure. Aged IEPOX-SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) to measure real-time aerosol mass and chemical changes of the SOA particles, and were also collected onto Teflon filters and into PILS vials for molecular-level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), ion chromatography, and total OS mass amounts.more » « less
-
We recently demonstrated that the heterogeneous hydroxyl radical (OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous OH oxidation of IEPOX-SOA particles. We reacted gas-phase IEPOX with inorganic sulfate particles of varying pH (0.5 to 2.5) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were aged at a relative humidity of 65% in an oxidation flow reactor (OFR) for 0-21 days of equivalent atmospheric OH exposure. Through molecular-level chemical analyses by hydrophilic interaction liquid chromatography method interfaced to electrospray ionization high-resolution quadrupole time- of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), we observed that highly acidic aerosol has higher oligomer ratio and exhibit much slower mass decay with OH oxidation (pH=0.5, lifetime = 56 days) as compared to less acidic aerosols (pH=2.5, lifetime=17 days). Based on atomic force microscopy (AFM) analysis, aerosol acidity could also affect the morphology and viscosity of IEPOX-SOA during OH oxidation process.more » « less
-
We recently demonstrated that the heterogeneous hydroxyl radical (OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous OH oxidation of IEPOX-SOA particles. We reacted gas-phase IEPOX with inorganic sulfate particles of varying pH (0.5 to 2.5) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were aged at a relative humidity of 65% in an oxidation flow reactor (OFR) for 0-21 days of equivalent atmospheric OH exposure. Through molecular-level chemical analyses by hydrophilic interaction liquid chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), we observed that highly acidic aerosol has higher oligomer ratio and exhibit much slower mass decay with OH oxidation (pH=0.5, lifetime = 56 days) as compared to less acidic aerosols (pH=2.5, lifetime=17 days). Based on atomic force microscopy (AFM) analysis, aerosol acidity could also affect the morphology and viscosity of IEPOX-SOA during OH oxidation process.more » « less
An official website of the United States government

