skip to main content

Search for: All records

Award ID contains: 1916758

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The morphology of mixed organic/inorganic particles can strongly influence the physicochemical properties of aerosols but remains relatively less examined in particle formation studies. The morphologies of inorganic seed particles grown with either -pinene or limonene secondary organic aerosol (SOA) generated in a flow tube reactor were found to depend on initial seed particle water content. Effloresced and deliquesced ammonium sulfate seed particles were generated at low relative humidity (<15% RH, dry) and high relative humidity (~60% RH, wet) and were also coated with secondary organic material under low growth and high growth conditions. Particles were dried and analyzed using SMPS and TEM for diameter and substrate-induced diameter changes and for the prevalence of phase separation for organic-coated particles. Effloresced inorganic seed particle diameters generally increased after impaction, whereas deliquesced inorganic seed particles had smaller differences in diameter, although they appeared morphologically similar to the effloresced seed particles. Differences in the changes to diameter for deliquesced seed particles suggest crystal restructuring with RH cycling. SOA-coated particles showed negative diameter changes for low organic growth, although wet-seeded organic particles changed by larger magnitudes compared to dry-seeded organic particles. High organic growth gave wide ranging diameter percent differences for both dry- and wet-seeded samples. Wet-seeded particles with organic coatings occasionally showed a textured morphology unseen in the coated particles with dry seeds. Using a flow tube reactor with a combination of spectrometry and microscopy techniques allows for insights into the dependence of aerosol particle morphology on formation parameters for two seed conditions and two secondary organic precursors. 
    more » « less
    Free, publicly-accessible full text available September 26, 2024
  2. The pH of aerosol particles remains challenging to measure because of their small size, complex composition, and high acidity. Acidity in aqueous aerosol particles, which are found abundantly in the atmosphere, impacts many chemical processes from reaction rates to cloud formation. Only one technique – pH paper – currently exists for directly determining the pH of aerosol particles, and this is restricted to measuring average acidity for entire particle populations. Other methods for evaluating aerosol pH include filter samples, particle-into-liquid sampling, Raman spectroscopy, organic dyes, and thermodynamic models, but these either operate in a higher pH range or are unable to assess certain chemical species or complexity. Here, we present a new method for determining acidity of individual particles and particle phases using carbon quantum dots as a novel in situ fluorophore. Carbon quantum dots are easily synthesized, shelf stable, and sensitive to pH in the highly acidic regime from pH 0 to pH 3 relevant to ambient aerosol particles. To establish the method, a calibration curve was formed from the ratiometric fluorescence intensity of aerosolized standard solutions with a correlation coefficient ( R 2 ) of 0.99. Additionally, the pH of aerosol particles containing a complex organic mixture (COM) representative of environmental aerosols was also determined, proving the efficacy of using carbon quantum dots as pH-sensitive fluorophores for complex systems. The ability to directly measure aerosol particle and phase acidity in the correct pH range can help parametrize atmospheric models and improve projections for other aerosol properties and their influence on health and climate. 
    more » « less