skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using three consecutive years of farmer survey data to identify prevailing conservation practices in four Midwestern US states
Abstract Granular temporal and spatial scale observations of conservation practices are essential for identifying changes in the production systems that improve soil health and water quality and inform long-term agricultural research and adaptive policy development. In this study, we demonstrate an innovative use of farmer practice survey data and what can be uniquely known from a detailed survey that targets specific farm groups with a regional focus over multiple consecutive years. Using three years of survey data ( n = 3914 respondents), we describe prevailing crop rotation, tillage, and cover crop practice use in four Midwestern US states. Like national metrics, the results confirm dominant practices across the landscape, including corn-soybean rotation, little use of continuous no-till, and the limited use of cover crops. Our detailed regional survey further reveals differences by state for no-till and cover crop adoption rates that were not captured in federal datasets. For example, 66% of sampled acreage in the Midwest has corn and soybean rotation, with Illinois having the highest rate (72%) and Michigan the lowest (41%). In 2018, 20% of the corn acreage and 38% of the soybean acreage were in no-till, and 13% of the corn acres and 9% of the soybean acres were planted with a cover crop. Cover crop adoption rates fluctuate from year to year. Results demonstrate the value of a farmer survey at state scales over multiple years in complementing federal statistics and monitoring state and yearly differences in practice adoption. Agricultural policies and industry heavily depend on accurate and timely information that reflects spatial and temporal dynamics. We recommend building an agricultural information exchange and workforce that integrates diverse data sources with complementary strengths to provide a greater understanding of agricultural management practices that provide baseline data for prevailing practices.  more » « less
Award ID(s):
1832042 2224712
PAR ID:
10465447
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Renewable Agriculture and Food Systems
Volume:
38
ISSN:
1742-1705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Kellogg Biological Station Long‐term Agroecosystem Research site (KBS LTAR) joined the national LTAR network in 2015 to represent a northeast portion of the North Central Region, extending across 76,000 km2of southern Michigan and northern Indiana. Regional cropping systems are dominated by corn (Zea mays)–soybean (Glycine max) rotations managed with conventional tillage, industry‐average rates of fertilizer and pesticide inputs uniformly applied, few cover crops, and little animal integration. In 2020, KBS LTAR initiated the Aspirational Cropping System Experiment as part of the LTAR Common Experiment, a co‐production model wherein stakeholders and researchers collaborate to advance transformative change in agriculture. The Aspirational (ASP) cropping system treatment, designed by a team of agronomists, farmers, scientists, and other stakeholders, is a five‐crop rotation of corn, soybean, winter wheat (Triticum aestivum), winter canola (Brassicus napus), and a diverse forage mix. All phases are managed with continuous no‐till, variable rate fertilizer inputs, and integrated pest management to provide benefits related to economic returns, water quality, greenhouse gas mitigation, soil health, biodiversity, and social well‐being. Cover crops follow corn and winter wheat, with fall‐planted crops in the rotation providing winter cover in other years. The experiment is replicated with all rotation phases at both the plot and field scales and with perennial prairie strips in consistently low‐producing areas of ASP fields. The prevailing practice (or Business as usual [BAU]) treatment mirrors regional prevailing practices as revealed by farmer surveys. Stakeholders and researchers evaluate the success of the ASP and BAU systems annually and implement management changes on a 5‐year cycle. 
    more » « less
  2. Abstract The transition from conventional to more regenerative cropping systems can be economically risky due to variable transition period yields and unforeseen costs. We compared yields and economic returns for the first 3 years of the transition from a business as usual (BAU) conventional corn (Zea mays)–soybean (Glycine max) rotation to an aspirational (ASP) five‐crop (corn‐soybean‐winter wheat [Triticum aestivum]–winter canola [Brassica napus]‐forage) rotation in the Upper Midwest United States. Regenerative ASP cropping practices included the more diverse crop rotation, continuous no‐till, cover crops, precision inputs, and livestock (compost) integration. For the first two transition years, BAU corn yields were 8%–12% higher than ASP while in the third transition year, BAU corn yields were 5% lower. Soybean yields were similar for the first 2 years but higher in BAU in the third year due to an ASP pest outbreak. Equivalent yields for other ASP crops were lower than BAU in the first 2 years but similar in the third year except for canola, which suffered from slug damage. Whole‐system economic returns narrowed across years; by year three, whole system comparisons for the ASP corn and soybean entry points (corn‐soybean‐wheat and soybean‐wheat‐canola, respectively) showed equivalent economic returns for BAU and ASP, despite yield differences, owing largely to the ASP system's reduced operational costs. Overall findings suggest that early regenerative systems can be as profitable as conventional systems with careful attention to rotation entry points and inputs. 
    more » « less
  3. null (Ed.)
    With over 65% of agronomic crops under no-till in Pennsylvania, herbicides are relied on for weed management. To lessen the environmental impact and selection pressure for herbicide resistance, we conducted a nine-year experiment to test herbicide reduction practices in a dairy crop rotation at Rock Springs, PA. The rotation included soybean (Glycine max L.) – corn (Zea mays L.) - 3-year alfalfa (Medicago sativa L.) - canola (Brassica napus L.). The following practices were used to reduce herbicide inputs: i. banding residual herbicides over corn and soybean rows and using high-residue inter-row cultivation; ii. seeding a small grain companion crop with alfalfa; iii. plowing once in six years to terminate the perennial forage. These practices were compared with standard herbicide-based weed management (SH) in continuous no-till. We hypothesized: i. There would be more weed biomass in the reduced herbicide treatment (RH), ii. leading to more weeds in RH over time, but iii. the added weed pressure would not affect yield iv. or differences in net return. We sampled weed biomass in soybean, corn, and the first two forage years. In corn and soybean, weed biomass was often greater in RH than SH and increased over the years in the RH treatments. In the forage, weed biomass did not always differ between treatments. Yield and differences in net return were similar in most crops and years. Results suggest that weed management with reduced herbicide inputs supplemented with an integrated approach can be effective but may lead to more weeds over time. 
    more » « less
  4. While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices. 
    more » « less
  5. Abstract Reducing tillage is a key goal for conservation and regenerative agriculture, yet research has struggled to identify ways to increase the use of the practice among farmers. Recent scholarship has identified social capital as an important piece of the adoption puzzle. However, the ways in which farmers' social capital influences conservation practice use are seldom identified or explored. In this study, we tested the effects of three measures of social capital on the adoption of no‐till among 1,523 row crop farmers in the United States Corn Belt. Specifically, we operationalized the extent to which farmers' social networks, network trust, and community conservation norms affect intra‐individual processes and thus influence farmers' decisions regarding adoption. Our results identified key mechanisms for the promotion of conservation practices through social capital. Subjective conservation norms emerged as a main pathway through which farmers' social capital influenced their use of no‐till, indicating that networks, network trust, and community norms can increase adoption through affective paths. We conclude that academic research and policy experts should continue to situate farmers as social actors and pay heed to the norms and cultural expectations surrounding agricultural conservation practices. 
    more » « less