skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 23, 2026

Title: Crop performance and profitability for the initial transition years of a regenerative cropping system in the Upper Midwest United States
Abstract The transition from conventional to more regenerative cropping systems can be economically risky due to variable transition period yields and unforeseen costs. We compared yields and economic returns for the first 3 years of the transition from a business as usual (BAU) conventional corn (Zea mays)–soybean (Glycine max) rotation to an aspirational (ASP) five‐crop (corn‐soybean‐winter wheat [Triticum aestivum]–winter canola [Brassica napus]‐forage) rotation in the Upper Midwest United States. Regenerative ASP cropping practices included the more diverse crop rotation, continuous no‐till, cover crops, precision inputs, and livestock (compost) integration. For the first two transition years, BAU corn yields were 8%–12% higher than ASP while in the third transition year, BAU corn yields were 5% lower. Soybean yields were similar for the first 2 years but higher in BAU in the third year due to an ASP pest outbreak. Equivalent yields for other ASP crops were lower than BAU in the first 2 years but similar in the third year except for canola, which suffered from slug damage. Whole‐system economic returns narrowed across years; by year three, whole system comparisons for the ASP corn and soybean entry points (corn‐soybean‐wheat and soybean‐wheat‐canola, respectively) showed equivalent economic returns for BAU and ASP, despite yield differences, owing largely to the ASP system's reduced operational costs. Overall findings suggest that early regenerative systems can be as profitable as conventional systems with careful attention to rotation entry points and inputs.  more » « less
Award ID(s):
2224712
PAR ID:
10638276
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Society of Agronomy
Date Published:
Journal Name:
Journal of Environmental Quality
ISSN:
0047-2425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Kellogg Biological Station Long‐term Agroecosystem Research site (KBS LTAR) joined the national LTAR network in 2015 to represent a northeast portion of the North Central Region, extending across 76,000 km2of southern Michigan and northern Indiana. Regional cropping systems are dominated by corn (Zea mays)–soybean (Glycine max) rotations managed with conventional tillage, industry‐average rates of fertilizer and pesticide inputs uniformly applied, few cover crops, and little animal integration. In 2020, KBS LTAR initiated the Aspirational Cropping System Experiment as part of the LTAR Common Experiment, a co‐production model wherein stakeholders and researchers collaborate to advance transformative change in agriculture. The Aspirational (ASP) cropping system treatment, designed by a team of agronomists, farmers, scientists, and other stakeholders, is a five‐crop rotation of corn, soybean, winter wheat (Triticum aestivum), winter canola (Brassicus napus), and a diverse forage mix. All phases are managed with continuous no‐till, variable rate fertilizer inputs, and integrated pest management to provide benefits related to economic returns, water quality, greenhouse gas mitigation, soil health, biodiversity, and social well‐being. Cover crops follow corn and winter wheat, with fall‐planted crops in the rotation providing winter cover in other years. The experiment is replicated with all rotation phases at both the plot and field scales and with perennial prairie strips in consistently low‐producing areas of ASP fields. The prevailing practice (or Business as usual [BAU]) treatment mirrors regional prevailing practices as revealed by farmer surveys. Stakeholders and researchers evaluate the success of the ASP and BAU systems annually and implement management changes on a 5‐year cycle. 
    more » « less
  2. Dataset Abstract This dataset includes information about the LTER main site treatments, agronomic practices carried out on the treatments and approved site use requests. Most long-term hypotheses associated with the KBS LTER site are being tested within the context of the main cropping systems study. This study was established on a 48 ha area on which a series of 7 different cropping systems were established in spring 1988, each replicated in one of 6 ha blocks. An eighth never-tilled successional treatment, is located 200 m off-site, replicated as four 0.06 ha plots. Cropping systems include the following treatments: T1. Conventional: standard chemical input corn/soybean/wheat rotation conventionally tilled (corn/soybean prior to 1992) T2. No-till: standard chemical input corn/soybean/wheat rotation no-tilled (corn/soybean prior to 1992) T3. Reduced input: low chemical input corn/soybean/wheat rotation conventionally tilled (ridge till prior to 1994) T4. Biologically based: zero chemical input corn/soybean wheat rotation conventionally tilled (ridge till prior to 1994) T5. Poplar: Populus clones on short-rotation (6-7 year) harvest cycle T6. Alfalfa: continuous alfalfa, replanted every 6-7 years (converted to switchgrass in 2018) T7. Early successional community: historically tilled soil T8. Mown grassland community: never-tilled soil. For specific crops in a given year see the Annual Crops Summary Table. In 1993 a series of forest sites were added to the main cropping system study to provide long-term reference points and to allow hypotheses related to substrate diversity to be tested. These include: TCF. Coniferous forest: three conifer plantations, 40-60 years old TDF. Decidious forest: three deciduous forest stands, two old-growth and one 40-60 years post-cutting TSF. Mid-successional forest: three old-field (mid-successional) sites 40+ years post-abandonment. All share a soil series with the main cropping system treatments, and are within 5 km of all other sites. For each system (and for a number of microplot treatments nested within the main treatment plots) the following baseline variates are being measured (described in greater detail in other data set descriptors): plant characteristics, including species distributions and abundances, net aboveground productivity by functional group (crop vs. non dominant biomass, selected non dominant biomass), economic yields, tissue C and N contents, seed bank composition; soil chemical and physical characteristics, including soil moisture, pH, inorganic N and P pools, total C, N, and P pools, bulk density; soil biological characteristics, including microbial biomass C and N, N mineralization rates (buried bags), microbial populations, invertebrate populations; and insect and pathogen dynamics, including distributions and abundances of major insect pests and predators and of Fusarium pathogens. original data source http://lter.kbs.msu.edu/datasets/7 
    more » « less
  3. null (Ed.)
    With over 65% of agronomic crops under no-till in Pennsylvania, herbicides are relied on for weed management. To lessen the environmental impact and selection pressure for herbicide resistance, we conducted a nine-year experiment to test herbicide reduction practices in a dairy crop rotation at Rock Springs, PA. The rotation included soybean (Glycine max L.) – corn (Zea mays L.) - 3-year alfalfa (Medicago sativa L.) - canola (Brassica napus L.). The following practices were used to reduce herbicide inputs: i. banding residual herbicides over corn and soybean rows and using high-residue inter-row cultivation; ii. seeding a small grain companion crop with alfalfa; iii. plowing once in six years to terminate the perennial forage. These practices were compared with standard herbicide-based weed management (SH) in continuous no-till. We hypothesized: i. There would be more weed biomass in the reduced herbicide treatment (RH), ii. leading to more weeds in RH over time, but iii. the added weed pressure would not affect yield iv. or differences in net return. We sampled weed biomass in soybean, corn, and the first two forage years. In corn and soybean, weed biomass was often greater in RH than SH and increased over the years in the RH treatments. In the forage, weed biomass did not always differ between treatments. Yield and differences in net return were similar in most crops and years. Results suggest that weed management with reduced herbicide inputs supplemented with an integrated approach can be effective but may lead to more weeds over time. 
    more » « less
  4. Crop rotations are known to improve soil health by replenishing lost nutrients, increasing organic matter, improving microbial activity, and reducing disease risk and weed pressure. We characterized the spatial distribution of crops and dominant field-scale cropping sequences from 2008 to 2019 for the Wisconsin Central Sands (WCS) region, a major producer of potato and vegetables in the U.S. The dominant two- and three-year rotations were determined, with an additional focus on assessing regional potato rotation management. Our results suggest corn and soybean are the two most widely planted crops, occurring on 67% and 36% of all agricultural land at least once during the study period. The most frequent two- and three-year crop rotations include corn, soybean, alfalfa, sweet corn, potato, and beans, with continuous corn being the most dominant two- and three-year rotations (13.2% and 8.5% of agricultural land, respectively). While four- and five-year rotations for potato are recommended to combat pest and disease pressure, 23.2% and 65.9% of potato fields returned to that crop in rotation after two and three years, respectively. Furthermore, 5.6% of potato fields were planted continuously with that crop. Given potato’s high nitrogen (N) fertilizer requirements, the prevalence of sandy soils, and ongoing water quality issues, adopting more widespread use of four- or five-year rotations of potato with crops that require zero or less N fertilizer could reduce groundwater nitrate concentrations and improve water quality. 
    more » « less
  5. Dataset AbstractThis data set contains information about agronomic yields for the Main Cropping System Experiment which include treatments 1-4 (corn – wheat – soybean rotations) and after 1994 treatment 6 (alfalfa). Agronomic yields are measured during normal crop harvest; yields are determined by machine harvesters appropriate to each crop as described in the Agronomic protocol.original data source http://lter.kbs.msu.edu/datasets/23 
    more » « less