All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s.
more »
« less
The RoboPol sample of optical polarimetric standards
Context. Optical polarimeters are typically calibrated using measurements of stars with known and stable polarization parameters. However, there is a lack of such stars available across the sky. Many of the currently available standards are not suitable for medium and large telescopes due to their high brightness. Moreover, as we find, some of the polarimetric standards used are in fact variable or have polarization parameters that differ from their cataloged values. Aims. Our goal is to establish a sample of stable standards suitable for calibrating linear optical polarimeters with an accuracy down to 10 −3 in fractional polarization. Methods. For 4 yr, we have been running a monitoring campaign of a sample of standard candidates comprised of 107 stars distributed across the northern sky. We analyzed the variability of the linear polarization of these stars, taking into account the non-Gaussian nature of fractional polarization measurements. For a subsample of nine stars, we also performed multiband polarization measurements. Results. We created a new catalog of 65 stars (see Table 2) that are stable, have small uncertainties of measured polarimetric parameters, and can be used as calibrators of polarimeters at medium and large telescopes.
more »
« less
- Award ID(s):
- 2109127
- PAR ID:
- 10465504
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 677
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Bok globules are small, dense clouds that act as isolated precursors for the formation of single or binary stars. Although recent dust polarization surveys, primarily with Planck, have shown that molecular clouds are strongly magnetized, the significance of magnetic fields in Bok globules has largely been limited to individual case studies, lacking a broader statistical understanding. In this work, we introduce a comprehensive optical polarimetric survey of 21 Bok globules. Using Gaia and near-infrared (IR) photometric data, we produce extinction maps for each target. Using the radiative torque alignment model customized to the physical properties of the Bok globule, we characterize the polarization efficiency of one representative globule as a function of its visual extinction. We thus find our optical polarimetric data to be a good probe of the globule’s magnetic field. Our statistical analysis of the orientation of elongated extinction structures relative to the plane-of-sky magnetic field orientations shows they do not align strictly parallel or perpendicular. Instead, the data is best explained by a bimodal distribution, with structures oriented at projected angles that are either parallel or perpendicular. The plane-of-sky magnetic field strengths on the scales probed by optical polarimetric data are measured using the Davis–Chandrasekhar–Fermi technique. We then derive magnetic properties such as Alfvén Mach numbers and mass-to-magnetic flux ratios. Our findings statistically place the large-scale (A$$_{\mathrm{V}} < 7 \, \text{mag}$$) magnetic properties of Bok globules in a dynamically important domain.more » « less
-
null (Ed.)ABSTRACT Polarimetric measurements, especially if extended at high energy, are expected to provide important insights into the mechanisms underlying the acceleration of relativistic particles in jets. In a previous work, we have shown that the polarization of the synchrotron X-ray emission produced by highly energetic electrons accelerated by a mildly relativistic shock carries essential imprints of the geometry and the structure of the magnetic fields in the downstream region. Here, we present the extension of our analysis to the non-stationary case, especially suitable to model the highly variable emission of high-energy emitting BL Lacs. We anticipate a large ($$\Pi \approx 40{{\ \rm per\ cent}}$$), almost time-independent degree of polarization in the hard/medium X-ray band, a prediction soon testable with the upcoming mission IXPE. The situation in other bands, in particular in the optical, is more complex. A monotonic decrease of the optical degree of polarization is observed during the development of a flare. At later stages, Π reaches zero and then it starts to increase, recovering large values at late times. The instant at which Π = 0 is marked by a rotation of the polarization angle by 90°. However, at optical frequencies, it is likely that more than one region contribute to the observed emission, potentially making it difficult to detect the predicted behaviour.more » « less
-
Abstract Hot DA white dwarfs (DAWDs) have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperatureTeffand surface gravity , which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distributions (SEDs). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of the Hubble Space Telescope (HST). In this paper we add 32 new fainter (16.5 <V< 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground-based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to <0.004 mag rms from 2700 to 7750 Å and to 0.008 mag rms at 1.6μm for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near-ultraviolet to the near-infrared, suitable for both ground- and space-based observatories. They are embedded in existing surveys like the Sloan Digital Sky Survey, Pan-STARRS, and Gaia, and will be naturally included in the Large Synoptic Survey Telescope survey by the Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the infrared, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories.more » « less
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular scale (θ ≳ 1 ° ) CMB polarization with the aim of constraining the tensor-to-scalar ratio, r, measuring the optical depth to reionization, τ , to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615±0.019° , 0.378±0.005° , and 0.266 ± 0.008° , respectively. Telescope pointing variations are within a few % of the beam FWHM.more » « less
An official website of the United States government

