Estimating multimodal distributions of travel times from real-world data is critical for understanding and managing congestion. Mixture models can estimate the overall distribution when distinct peaks exist in the probability density function, but no transfer of mixture information under epistemic uncertainty across different spatiotemporal scales has been considered for capturing unobserved heterogeneity. In this paper, a physics-informed and -regularized prediction model is developed that shares observations across similarly distributed network segments across time and space. By grouping similar mixture models, the model uses a particular sample distribution at distant non-contiguous unexplored locations and improves TT prediction. Compared to traditional prediction without those updates, the proposed model's 19% of performance show the benefit of indirect learning. Different from traditional travel time prediction tools, the developed model can be used by traffic and planning agencies in knowing how far back in history and what sample size of historic data would be useful for current prediction.
more »
« less
Physics Informed Temporal Multimodal Multivariate Learning for Short-Term Traffic State Prediction
Estimating multimodal distributions of travel times (TT) from real-world data is critical for understanding and managing congestion. Mixture models can estimate the overall distribution when distinct peaks exist in the probability density function, but no transfer of mixture information under epistemic uncertainty across different spatiotemporal scales has been considered for capturing unobserved heterogeneity. In this paper, a physics-informed and -regularized (PIR) prediction model is developed that shares observations across similarly distributed network segments over time and space. By grouping similar mixture models, the model uses a particular sample distribution at distant non-contiguous unexplored locations and improves TT prediction. The model includes hierarchical Kalman filtering (KF) updates using the traffic fundamental diagram to regulate any spurious correlation and estimates the mixture of TT distributions from observations at the current location and time sampled from the multimodal and multivariate TT distributions at other locations and times. In order to overcome the limitations of KF, this study developed dynamic graph neural network (GCN) model which uses time evolving spatial correlations. The KF model with PIR predicts traffic state with 19% more accuracy than TMML model in Park et al.(2022) and GCN model will further reduce the uncertainty in prediction. This study uses information gain from explored correlated links to obtain accurate predictions for unexplored ones.
more »
« less
- PAR ID:
- 10465564
- Date Published:
- Journal Name:
- INFORMS Transportation and Logistics Society Second Triennial Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Time-Sensitive Networking (TSN) is designed for real-time applications, usually pertaining to a set of Time-Triggered (TT) data flows. TT traffic generally requires low packet loss and guaranteed upper bounds on end-to-end delay. To guarantee the end-to-end delay bounds, TSN uses Time-Aware Shaper (TAS) to provide deterministic service to TT flows. Each frame of TT traffic is scheduled a specific time slot at each switch for its transmission. Several factors may influence frame transmissions, which then impact the scheduling in the whole network. These factors may cause frames sent in wrong time slots, namely misbehaviors. To mitigate the occurrence of misbehaviors, we need to find proper scheduling for the whole network. In our research, we use a reinforcement-learning model, which is called Deep Deterministic Policy Gradient (DDPG), to find the suitable scheduling. DDPG is used to model the uncertainty caused by the transmission-influencing factors such as time-synchronization errors. Compared with the state of the art, our approach using DDPG significantly decreases the number of misbehaviors in TSN scenarios studied and improves the delay performance of the network.more » « less
-
We introduce temporal multimodal multivariate learning, a new family of decision making models that can indirectly learn and transfer online information from simultaneous observations of a probability distribution with more than one peak or more than one outcome variable from one time stage to another. We approximate the posterior by sequentially removing additional uncertainties across different variables and time, based on data-physics driven correlation, to address a broader class of challenging time-dependent decision-making problems under uncertainty. Extensive experiments on real-world datasets ( i.e., urban traffic data and hurricane ensemble forecasting data) demonstrate the superior performance of the proposed targeted decision-making over the state-of-the-art baseline prediction methods across various settings.more » « less
-
Predictive routing is effective in knowledge transfer. However, it ignores information gained from probability distributions with more than one peak. We introduce traffic multimodal information learning, a new class of transportation decision-making models that can learn and transfer online information from multiple simultaneous observations of a probability distribution with multiple peaks or multiple outcome variables from one time stage to the next. Multimodal learning improves the scientific and engineering value of autonomous vehicles by determining the best routes based on the intended level of exploration, risk, and limits.more » « less
-
null (Ed.)We extend network tomography to traffic flows that are not necessarily Poisson random processes. This assumption has governed the field since its inception in 1996 by Y. Vardi. We allow the distribution of the packet count of each traffic flow in a given time interval to be a mixture of Poisson random variables. Both discrete as well as continuous mixtures are studied. For the latter case, we focus on mixed Poisson distributions with Gamma mixing distribution. As is well known, this mixed Poisson distribution is the negative binomial distribution. Other mixing distributions, such as Wald or the inverse Gaussian distribution can be used. Mixture distributions are overdispersed with variance larger than the mean. Thus, they are more suitable for Internet traffic than the Poisson model. We develop a second-order moment matching approach for estimating the mean traffic rate for each source-destination pair using least squares and the minimum I-divergence iterative procedure. We demonstrate the performance of the proposed approach by several numerical examples. The results show that the averaged normalized mean squared error in rate estimation is of the same order as in the classic Poisson based network tomography. Furthermore, no degradation in performance was observed when traffic rates are Poisson but Poisson mixtures are assumed.more » « less
An official website of the United States government

