skip to main content


Title: Complete Chloroplast Genome Sequence of the Western Poison Oak, Toxicodendron diversilobum (Anacardiaceae), from California
ABSTRACT Here, we present the complete chloroplast genome sequence of Toxicodendron diversilobum , western poison oak, from Pacific Grove, California. The genome is 159,543 bp in length, contains 133 genes, and has a high level of gene synteny to other species of Toxicodendron .  more » « less
Award ID(s):
1832446
PAR ID:
10465595
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Editor(s):
Pritchard, Leighton
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
12
Issue:
3
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fodor, Anthony (Ed.)
    ABSTRACT <p>Are two adjacent genes in the same operon? What are the order and spacing between several transcription factor binding sites? Genome browsers are software data visualization and exploration tools that enable biologists to answer questions such as these. In this paper, we report on a major update to our browser, Genome Explorer, that provides nearly instantaneous scaling and traversing of a genome, enabling users to quickly and easily zoom into an area of interest. The user can rapidly move between scales that depict the entire genome, individual genes, and the sequence; Genome Explorer presents the most relevant detail and context for each scale. By downloading the data for the entire genome to the user’s web browser and dynamically generating visualizations locally, we enable fine control of zoom and pan functions and real-time redrawing of the visualization, resulting in smoother and more intuitive exploration of a genome than is possible with other browsers. Further, genome features are presented together, in-line, using familiar graphical depictions. In contrast, many other browsers depict genome features using data tracks, which have low information density and can visually obscure the relative positions of features. Genome Explorer diagrams have a high information density that provides larger amounts of genome context and sequence information to be presented in a given-sized monitor than for tracks-based browsers. Genome Explorer provides optional data tracks for the analysis of large-scale data sets and a unique comparative mode that aligns genomes at orthologous genes with synchronized zooming.</p></sec> <sec><title>IMPORTANCE

    Genome browsers provide graphical depictions of genome information to speed the uptake of complex genome data by scientists. They provide search operations to help scientists find information and zoom operations to enable scientists to view genome features at different resolutions. We introduce the Genome Explorer browser, which provides extremely fast zooming and panning of genome visualizations and displays with high information density.

     
    more » « less
  2. PREMISE

    Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm cladeViburnumto examine the evolutionary associations, functional implications, and possible drivers of genome size.

    METHODS

    Chromosome counts and genome size estimates were mapped onto aViburnumphylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function.

    RESULTS

    We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales.

    CONCLUSIONS

    Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply toViburnum.

     
    more » « less
  3. Improvements in DNA sequencing technology and computational methods have led to a substantial increase in the creation of high-quality genome assemblies of many species. To understand the biology of these genomes, annotation of gene features and other functional elements is essential; however for most species, only the reference genome is well-annotated. One strategy to annotate new or improved genome assemblies is to map or ‘lift over’ the genes from a previously-annotated reference genome. Here we describe Liftoff, a new genome annotation lift-over tool capable of mapping genes between two assemblies of the same or closely-related species. Liftoff aligns genes from a reference genome to a target genome and finds the mapping that maximizes sequence identity while preserving the structure of each exon, transcript, and gene. We show that Liftoff can accurately map 99.9% of genes between two versions of the human reference genome with an average sequence identity >99.9%. We also show that Liftoff can map genes across species by successfully lifting over 98.4% of human protein-coding genes to a chimpanzee genome assembly with 98.7% sequence identity. Availability The source code for Liftoff is available at https://github.com/agshumate/Liftoff 
    more » « less
  4. Macqueen, D (Ed.)
    Abstract While the cost and time for assembling a genome has drastically decreased, it still remains a challenge to assemble a highly contiguous genome. These challenges are rapidly being overcome by the integration of long-read sequencing technologies. Here, we use long-read sequencing to improve the contiguity of the threespine stickleback fish (Gasterosteus aculeatus) genome, a prominent genetic model species. Using Pacific Biosciences sequencing, we assembled a highly contiguous genome of a freshwater fish from Paxton Lake. Using contigs from this genome, we were able to fill over 76.7% of the gaps in the existing reference genome assembly, improving contiguity over fivefold. Our gap filling approach was highly accurate, validated by 10X Genomics long-distance linked-reads. In addition to closing a majority of gaps, we were able to assemble segments of telomeres and centromeres throughout the genome. This highlights the power of using long sequencing reads to assemble highly repetitive and difficult to assemble regions of genomes. This latest genome build has been released through a newly designed community genome browser that aims to consolidate the growing number of genomics datasets available for the threespine stickleback fish. 
    more » « less
  5. Abstract Hares (genus Lepus) provide clear examples of repeated and often massive introgressive hybridization and striking local adaptations. Genomic studies on this group have so far relied on comparisons to the European rabbit (Oryctolagus cuniculus) reference genome. Here, we report the first de novo draft reference genome for a hare species, the mountain hare (Lepus timidus), and evaluate the efficacy of whole-genome re-sequencing analyses using the new reference versus using the rabbit reference genome. The genome was assembled using the ALLPATHS-LG protocol with a combination of overlapping pair and mate-pair Illumina sequencing (77x coverage). The assembly contained 32,294 scaffolds with a total length of 2.7 Gb and a scaffold N50 of 3.4 Mb. Re-scaffolding based on the rabbit reference reduced the total number of scaffolds to 4,205 with a scaffold N50 of 194 Mb. A correspondence was found between 22 of these hare scaffolds and the rabbit chromosomes, based on gene content and direct alignment. We annotated 24,578 protein coding genes by combining ab-initio predictions, homology search, and transcriptome data, of which 683 were solely derived from hare-specific transcriptome data. The hare reference genome is therefore a new resource to discover and investigate hare-specific variation. Similar estimates of heterozygosity and inferred demographic history profiles were obtained when mapping hare whole-genome re-sequencing data to the new hare draft genome or to alternative references based on the rabbit genome. Our results validate previous reference-based strategies and suggest that the chromosome-scale hare draft genome should enable chromosome-wide analyses and genome scans on hares. 
    more » « less