ABSTRACT Strong metallicity-dependent winds dominate the evolution of core He-burning, classical Wolf–Rayet (cWR) stars, which eject both H and He-fusion products such as $$^{14}$$N, $$^{12}$$C, $$^{16}$$O, $$^{19}$$F, $$^{22}$$Ne, and $$^{23}$$Na during their evolution. The chemical enrichment from cWRs can be significant. cWR stars are also key sources for neutron production relevant for the weak s-process. We calculate stellar models of cWRs at solar metallicity for a range of initial Helium star masses (12–50 $$\rm M_{\odot }$$), adopting recent hydrodynamical wind rates. Stellar wind yields are provided for the entire post-main sequence evolution until core O-exhaustion. While literature has previously considered cWRs as a viable source of the radioisotope $$^{26}$$Al, we confirm that negligible $$^{26}$$Al is ejected by cWRs since it has decayed to $$^{26}$$Mg or proton-captured to $$^{27}$$Al. However, in Paper I, we showed that very massive stars eject substantial quantities of $$^{26}$$Al, among other elements including N, Ne, and Na, already from the zero-age-main-sequence. Here, we examine the production of $$^{19}$$F and find that even with lower mass-loss rates than previous studies, our cWR models still eject substantial amounts of $$^{19}$$F. We provide central neutron densities (N$$_{n}$$) of a 30 $$\rm M_{\odot }$$ cWR compared with a 32 $$\rm M_{\odot }$$ post-VMS WR and confirm that during core He-burning, cWRs produce a significant number of neutrons for the weak s-process via the $$^{22}$$Ne($$\alpha$$,n)$$^{25}$$Mg reaction. Finally, we compare our cWR models with observed [Ne/He], [C/He], and [O/He] ratios of Galactic WC and WO stars.
more »
« less
Stellar wind yields of very massive stars
ABSTRACT The most massive stars provide an essential source of recycled material for young clusters and galaxies. While very massive stars (VMSs, M>100 $$\rm {\rm M}_{\odot }$$) are relatively rare compared to O stars, they lose disproportionately large amounts of mass already from the onset of core H-burning. VMS have optically thick winds with elevated mass-loss rates in comparison to optically thin standard O-star winds. We compute wind yields and ejected masses on the main sequence, and we compare enhanced mass-loss rates to standard ones. We calculate solar metallicity wind yields from MESA stellar evolution models in the range 50–500 $$\rm {\rm M}_{\odot }$$, including a large nuclear network of 92 isotopes, investigating not only the CNO-cycle, but also the Ne–Na and Mg–Al cycles. VMS with enhanced winds eject 5–10 times more H-processed elements (N, Ne, Na, Al) on the main sequence in comparison to standard winds, with possible consequences for observed anticorrelations, such as C–N and Na–O, in globular clusters. We find that for VMS 95 per cent of the total wind yields is produced on the main sequence, while only ∼ 5 per cent is supplied by the post-main sequence. This implies that VMS with enhanced winds are the primary source of 26Al, contrasting previous works where classical Wolf–Rayet winds had been suggested to be responsible for galactic 26Al enrichment. Finally, 200 $$\rm {\rm M}_{\odot }$$ stars eject 100 times more of each heavy element in their winds than 50 $$\rm {\rm M}_{\odot }$$ stars, and even when weighted by an IMF their wind contribution is still an order of magnitude higher than that of 50 $$\rm {\rm M}_{\odot }$$ stars.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10465612
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 526
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 534-547
- Size(s):
- p. 534-547
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The chemical feedback from stellar winds in low metallicity (Z) environments is key to understanding the evolution of globular clusters and the early Universe. With a disproportionate amount of mass lost from the most massive stars (M > 100 M⊙) and an excess of such stars expected at the lowest metallicities, their contribution to the enrichment of the early pristine clusters could be significant. In this work, we examine the effect of mass loss at low metallicity on the nucleosynthesis and wind yields of (very) massive stars. We calculated stellar models with initial masses ranging from 30 to 500 M⊙during core hydrogen and helium burning phases at four metallicities ranging from 20% Z⊙down to 1% Z⊙. We provide the ejected masses and net yields for each grid of models. While mass-loss rates decrease withZ, we find that not only are wind yields significant, but the nucleosynthesis is also altered due to the change in central temperatures, and therefore it also plays a role. We find that 80–300 M⊙models can produce large quantities of Na-rich and O-poor material, which is relevant for the observed Na-O anti-correlation in globular clusters.more » « less
-
ABSTRACT With Gaia parallaxes, it is possible to study the stellar populations associated with individual Galactic supernova remnants (SNRs) to estimate the mass of the exploding star. Here, we analyse the luminous stars near the Vela pulsar and SNR to find that its progenitor was probably ($$\mathrel {\raise.3ex\rm{\gt }\lower0.6ex\rm{\sim }}90\rm \,per\,cent$$) low mass (8.1–$$10.3\, {\rm M}_\odot$$). The presence of the O star γ2 Vel a little over 100 pc from Vela is the primary ambiguity, as including it in the analysis volume significantly increases the probability (to 5 per cent) of higher mass ($$\gt 20\, {\rm M}_\odot$$) progenitors. However, to be a high-mass star associated with γ2 Vel’s star cluster at birth, the progenitor would have to be a runaway star from an unbound binary with an unusually high velocity. The primary impediment to analysing large numbers of Galactic SNRs in this manner is the lack of accurate distances. This can likely be solved by searching for absorption lines from the SNR in stars as a function of distance, a method which yielded a distance to Vela in agreement with the direct pulsar parallax. If Vela was a $$10\, {\rm M}_\odot$$ supernova in an external galaxy, the 50-pc search region used in extragalactic studies would contain only $$\simeq 10\rm \,per\,cent$$ of the stars formed in a 50-pc region around the progenitor at birth and $$\simeq 90\rm \,per\,cent$$ of the stars in the search region would have been born elsewhere.more » « less
-
ABSTRACT We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass $${\rm M}_{\star }\sim 10^{7}\, {\rm M}_{\odot }$$, effective radius $${\rm R}_{\rm 1/2\, \rm Clump}\sim 20\, {\rm pc}$$, and surface density $$\Sigma _{\star } \sim 10^{4}\, {\rm M}_{\odot }\, {\rm pc}^{-2}$$. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches $${\rm SFR} \sim 50\, {\rm M}_{\odot }\, {\rm yr}^{-1}$$ and $$\Sigma _{\rm SFR} \sim 10^{4}\, {\rm M}_{\odot }\, {\rm yr}^{-1}\, {\rm kpc}^{-2}$$, converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters.more » « less
-
ABSTRACT Most stars are born in the crowded environments of gradually forming star clusters. Dynamical interactions between close-passing stars and the evolving ultraviolet radiation fields from proximate massive stars are expected to sculpt the protoplanetary discs (PPDs) in these clusters, potentially contributing to the diversity of planetary systems that we observe. Here, we investigate the impact of cluster environment on disc demographics by implementing simple PPD evolution models within N-body simulations of gradual star cluster formation, containing 50 per cent primordial binaries. We consider a range of star formation efficiency per free-fall time, $$\epsilon _{\rm ff}$$, and mass surface density of the natal cloud environment, $$\Sigma _{\rm cloud}$$, both of which affect the overall duration of cluster formation. We track the interaction history of all stars to estimate the dynamical truncation of the discs around stars involved in close encounters. We also track external photoevaporation of the discs due to the ionizing radiation field of the nearby high- and intermediate-mass ($$\gt 5\,{\rm M}_\odot$$) stars. We find that $$\epsilon _{\rm ff}$$, $$\Sigma _{\rm cloud}$$, and the presence of primordial binaries have major influences on the masses and radii of the disc population. In particular, external photoevaporation has a greater impact than dynamical interactions in determining the fate of discs in our clusters.more » « less
An official website of the United States government
