Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80
- Award ID(s):
- 1927130
- PAR ID:
- 10358251
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 923
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 47
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M ⊙), binary stars at various initial periods and solar metallicity (Z = 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M ⊙, while models with initial primary masses ≥35M ⊙can also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30M ⊙and higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10M ⊙primary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary. -
Context. The 26 Al short-lived radioactive nuclide is the source of the observed galactic diffuse γ -ray emission at 1.8 MeV. While different sources of 26 Al have been explored, such as asymptotic giant branch stars, massive stellar winds, and supernovae, the contribution of very massive stars has not been studied so far. Aims. We study the contribution of the stellar wind of very massive stars, here, stars with initial masses between 150 and 300 M ⊙ , to the enrichment in 26 Al of the galactic interstellar medium. Methods. We studied the production of 26 Al by studying rotating and non-rotating very massive stellar models with initial masses between 150 and 300 M ⊙ for metallicities Z = 0.006, 0.014, and 0.020. We compared this result to a simple Milky Way model and took the metallicity and the star formation rate gradients into account. Results. We obtain that very massive stars in the Z = 0.006 − 0.020 metallicity range might be very significant contributors to the 26 Al enrichment of the interstellar medium. Typically, the contribution of the winds of massive stars to the total quantity of 26 Al in the Galaxy increases by 150% when very massive stars are considered. Conclusions. Despite their rarity, very massive stars might be important contributors to 26 Al and might overall be very important actors for nucleosynthesis in the Galaxy.more » « less
-
Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)Metal-poor stars were formed during the early epochs when only massive stars had time to evolve and contribute to the chemical enrichment. Low-mass metal-poor stars survive until the present and provide fossil records of the nucleosynthesis of early massive stars. On the other hand, short-lived radionuclides (SLRs) in the early solar system (ESS) reflect the nucleosynthesis of sources that occurred close to the proto-solar cloud in both space and time. Both the ubiquity of Sr and Ba and the diversity of heavy-element abundance patterns observed in single metal-poor stars suggest that some neutron-capture mechanisms other than the r -process might have operated in early massive stars. Three such mechanisms are discussed: the weak s -process in non-rotating models with initial carbon enhancement, a new s -process induced by rapid rotation in models with normal initial composition, and neutron-capture processes induced by proton ingestion in non-rotating models. In addition, meteoritic data are discussed to constrain the core-collapse supernova (CCSN) that might have triggered the formation of the solar system and provided some of the SLRs in the ESS. If there was a CCSN trigger, the data point to a low-mass CCSN as the most likely candidate. An 11.8 M ⊙ CCSN trigger is discussed. Its nucleosynthesis, the evolution of its remnant, and the interaction of the remnant with the proto-solar cloud appear to satisfy the meteoritic constraints and can account for the abundances of the SLRs 41 Ca, 53 Mn, and 60 Fe in the ESS.more » « less
-
ABSTRACT Strong metallicity-dependent winds dominate the evolution of core He-burning, classical Wolf–Rayet (cWR) stars, which eject both H and He-fusion products such as $^{14}$N, $^{12}$C, $^{16}$O, $^{19}$F, $^{22}$Ne, and $^{23}$Na during their evolution. The chemical enrichment from cWRs can be significant. cWR stars are also key sources for neutron production relevant for the weak s-process. We calculate stellar models of cWRs at solar metallicity for a range of initial Helium star masses (12–50 $\rm M_{\odot }$), adopting recent hydrodynamical wind rates. Stellar wind yields are provided for the entire post-main sequence evolution until core O-exhaustion. While literature has previously considered cWRs as a viable source of the radioisotope $^{26}$Al, we confirm that negligible $^{26}$Al is ejected by cWRs since it has decayed to $^{26}$Mg or proton-captured to $^{27}$Al. However, in Paper I, we showed that very massive stars eject substantial quantities of $^{26}$Al, among other elements including N, Ne, and Na, already from the zero-age-main-sequence. Here, we examine the production of $^{19}$F and find that even with lower mass-loss rates than previous studies, our cWR models still eject substantial amounts of $^{19}$F. We provide central neutron densities (N$_{n}$) of a 30 $\rm M_{\odot }$ cWR compared with a 32 $\rm M_{\odot }$ post-VMS WR and confirm that during core He-burning, cWRs produce a significant number of neutrons for the weak s-process via the $^{22}$Ne($\alpha$,n)$^{25}$Mg reaction. Finally, we compare our cWR models with observed [Ne/He], [C/He], and [O/He] ratios of Galactic WC and WO stars.
-
Radioactive nuclei are the key to understanding the circumstances of the birth of our Sun because meteoritic analysis has proven that many of them were present at that time. Their origin, however, has been so far elusive. The ERC-CoG-2016 RADIOSTAR project is dedicated to investigating the production of radioactive nuclei by nuclear reactions inside stars, their evolution in the Milky Way Galaxy, and their presence in molecular clouds. So far, we have discovered that: (i) radioactive nuclei produced by slow (107Pd and 182Hf) and rapid (129I and 247Cm) neutron captures originated from stellar sources —asymptotic giant branch (AGB) stars and compact binary mergers, respectively—within the galactic environment that predated the formation of the molecular cloud where the Sun was born; (ii) the time that elapsed from the birth of the cloud to the birth of the Sun was of the order of 107 years, and (iii) the abundances of the very short-lived nuclei 26Al, 36Cl, and 41Ca can be explained by massive star winds in single or binary systems, if these winds directly polluted the early Solar System. Our current and future work, as required to finalise the picture of the origin of radioactive nuclei in the Solar System, involves studying the possible origin of radioactive nuclei in the early Solar System from core-collapse supernovae, investigating the production of 107Pd in massive star winds, modelling the transport and mixing of radioactive nuclei in the galactic and molecular cloud medium, and calculating the galactic chemical evolution of 53Mn and 60Fe and of the p-process isotopes 92Nb and 146Sm.more » « less