skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of polydisc slicing
Abstract We prove a dimension‐free stability result for polydisc slicing due to Oleszkiewicz and Pełczyński. Intriguingly, compared to the real case, there is an additional asymptotic maximizer. In addition to Fourier‐analytic bounds, we crucially rely on a self‐improving feature of polydisc slicing, established via probabilistic arguments.  more » « less
Award ID(s):
2246484
PAR ID:
10465626
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Mathematika
Volume:
69
Issue:
4
ISSN:
0025-5793
Format(s):
Medium: X Size: p. 1165-1182
Size(s):
p. 1165-1182
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic or temporal networks enable representation of time-varying edges between nodes. Conventional adjacency-based data structures used for storing networks such as adjacency lists were designed without incorporating time and can thus quickly retrieve all edges between two sets of nodes (anode-based slice) but cannot quickly retrieve all edges that occur within a given time interval (atime-based slice). We propose a hybrid data structure for storing temporal networks that stores edges in both an adjacency dictionary, enabling rapid node-based slices, and an interval tree, enabling rapid time-based slices. Our hybrid structure also enablescompound slices, where one needs to slice both over nodes and time, either by slicing first over nodes or slicing first over time. We further propose an approach for predictive compound slicing, which attempts to predict whether a node-based or time-based compound slice is more efficient. We evaluate our hybrid data structure on many real temporal network data sets and find that they achieve much faster slice times than existing data structures with only a modest increase in creation time and memory usage. 
    more » « less
  2. Abstract We propose a method for recognizing null singularities in a computer simulation that uses a foliation by spacelike surfaces. The method involves harmonic time slicing as well as rescaled tetrad variables. As a ‘proof of concept’ we show that the method works in Reissner–Nordstrom spacetime. 
    more » « less
  3. IntroductionEffective monitoring of insect-pests is vital for safeguarding agricultural yields and ensuring food security. Recent advances in computer vision and machine learning have opened up significant possibilities of automated persistent monitoring of insect-pests through reliable detection and counting of insects in setups such as yellow sticky traps. However, this task is fraught with complexities, encompassing challenges such as, laborious dataset annotation, recognizing small insect-pests in low-resolution or distant images, and the intricate variations across insect-pests life stages and species classes. MethodsTo tackle these obstacles, this work investigates combining two solutions, Hierarchical Transfer Learning (HTL) and Slicing-Aided Hyper Inference (SAHI), along with applying a detection model. HTL pioneers a multi-step knowledge transfer paradigm, harnessing intermediary in-domain datasets to facilitate model adaptation. Moreover, slicing-aided hyper inference subdivides images into overlapping patches, conducting independent object detection on each patch before merging outcomes for precise, comprehensive results. ResultsThe outcomes underscore the substantial improvement achievable in detection results by integrating a diverse and expansive in-domain dataset within the HTL method, complemented by the utilization of SAHI. DiscussionWe also present a hardware and software infrastructure for deploying such models for real-life applications. Our results can assist researchers and practitioners looking for solutions for insect-pest detection and quantification on yellow sticky traps. 
    more » « less
  4. In this paper, we consider multi-agent deep reinforcement learning (deep RL) based network slicing agents in a dynamic environment with multiple base stations and multiple users. We develop a deep RL based jammer with limited prior information and limited power budget. The goal of the jammer is to minimize the transmission rates achieved with network slicing and thus degrade the network slicing agents' performance. We design a jammer with both listening and jamming phases and address jamming location optimization as well as jamming channel optimization via deep RL. We evaluate the jammer at the optimized location, generating interference attacks in the optimized set of channels by switching between the jamming phase and listening phase. We show that the proposed jammer can significantly reduce the victims' performance without direct feedback or prior knowledge on the network slicing policies. 
    more » « less
  5. Abstract Just as 2D shadows of 3D curves lose structure where lines cross, 3D graphics projections of smooth 4D topological surfaces are interrupted where one surface intersects itself. They twist, turn, and fold back on themselves, leaving important but hidden features behind the surface sheets. In this paper, we propose a smart slicing tool that can read the 4D surface in its entropy map and suggest the optimal way to generate cross‐sectional images — or “slices” — of the surface to visualize its underlying 4D structure. Our visualization thinks of a 4D‐embedded surface as a collection of 3D curves stacked in time, very much like a flip‐book animation, where successive terms in the sequence differ at most by a critical change. This novel method can generate topologically meaningful visualization to depict complex and unfamiliar 4D surfaces, with the minimum number of cross‐sectional diagrams. Our approach has been successfully used to create flip‐books of diagrams to visualize a range of known 4D surfaces. In this preliminary study, our results show that the new visualization and slicing tool can help the viewers to understand and describe the complex spatial relationships and overall structures of 4D surfaces. 
    more » « less